
- •Пассивные элементы схем замещения
- •Основные законы
- •Анализ электрических цепей постоянного тока Топологические понятия теории электрических цепей
- •Анализ простых электрических цепей Схемы соединения потребителей
- •Условие передачи максимальной мощности от источника к потребителю
- •Нелинейные цепи постоянного тока Основные понятия
- •Последовательное соединение:
- •Расчет (выбор) сечения проводов
- •Переменный электрический ток Электрические цепи однофазного переменного тока
- •Получение переменного тока
- •Характеристики синусоидальных функций
- •Действующее значение переменного тока
- •Векторные диаграммы
- •Переменный ток в цепи с последовательным соединением элементов r, l, c
- •Треугольники напряжений, сопротивлений и мощностей
- •Электрические цепи однофазного переменного тока с параллельным соединением элементов r, l, c
- •Параллельное соединение реальных элементов электрической цепи
- •Комплексный (символический) метод расчета цепей синусоидального тока
- •Трехфазный электрический ток Электрические цепи трехфазного переменного тока
- •Получение трехфазного тока
- •Мощность трехфазного тока
- •Соединения приемников звездой
- •Соотношение между линейным и фазным напряжением
- •Соединение приемников треугольником
- •Магнитные цепи Магнитное поле и его параметры
- •Относительная магнитная проницаемость
- •Петля магнитного гистерезиса
- •Магнитные цепи электротехнических устройств постоянного тока
- •Закон Ома для магнитной цепи
- •Расчет неразветвленной магнитной цепи постоянного тока
- •1.Прямая задача
- •2.Обратная задача
- •Магнитные цепи электротехнических устройств переменного тока
- •Есть амплитудное значение магнитного потока.
- •Свойства ферромагнитных материалов в переменных магнитных полях
- •Трансформаторы
- •Принцип действия однофазного силового трансформатора
- •Электрические машины
- •Асинхронные двигатели
- •Механическая характеристика асинхронного двигателя
- •Синхронные машины
- •Подключение трехфазных двигателей к однофазной сети
- •Машины постоянного тока
- •Способы возбуждения электродвигателей постоянного тока
- •Пуск двигателей постоянного тока
- •Регулирование частоты вращения электродвигателя постоянного тока
- •Механические характеристики электродвигателей постоянного тока
- •Электроснабжение объектов
- •Потребители электрической энергии
- •Структурная схема системы электроснабжения
- •Источники электроснабжения
- •Схемы электроснабжения
- •Трансформаторные подстанции
- •Воздушные линии электропередач
- •Кабельные линии электропередач
- •Качество электроэнергии и пути ее рационального использования
- •Электробезопасность Действие электрического тока на человека
- •Способы защиты от поражения электрическим током в электроустановках
- •Классификация помещений по опасности поражения электрическим током
- •Электроосвещение
- •Основы электроники
- •Полупроводниковые материалы
- •Электронно-дырочный р-n переход
- •Выпрямительные или силовые диоды
- •Переключающие диоды - тиристоры
- •Биполярные транзисторы
- •Предельно-допустимые параметры транзистора
- •Полевые транзисторы
- •Источники вторичного электропитания (выпрямители)
- •Однополупериодный выпрямитель (четвертьмост)
- •Электронные усилители
- •Цифровые устройства Алгебра логики (алгебра Буля)
- •Основные понятия алгебры логики
- •Система обозначения интегральных схем
- •Электрические измерения
- •Погрешности измерений
- •Методы измерений
- •Классификация электроизмерительных приборов
- •Приборы магнитоэлектрической системы
- •Приборы электромагнитной системы
- •Приборы электродинамической системы
- •Компенсационный метод измерений
- •Измерение электрических величин Измерение силы тока
- •Измерение напряжения
- •Измерение сопротивлений
- •Измерение мощности и энергии
- •Дополнительная
Цифровые устройства Алгебра логики (алгебра Буля)
Цифровые устройства построены на принципе многократного повторения относительно простых базовых схем. Связи между этими схемами строятся на основе чисто формальных методов. Инструментом такого построения служит булева алгебра (алгебра логики).
Логическая переменная Х (или набор переменных – Х1,Х2,….Хn) так же как и функции этой переменной – У, то есть У=f(Х1,Х2,….Хn), принимают только два возможных значения:
- значение логического нуля (низкий уровень (отсутствие) сигнала);
- значение логической единицы (высокий уровень сигнала).
Таким образом алгебра логики изучает связь между переменными, принимающими только значения "1" и "0".
Основные понятия алгебры логики
Закон исключенного третьего
Если х ≠ 1, то х = 0, если х ≠ 0, то х = 1.
Существуют три основные операции между логическими переменными:
1) Конъюнкция (операция "и", логическое умножение). Конъюнкция нескольких переменных равна 1 лишь тогда, когда все переменные равны 1. Конъюнкция обозначается в виде произведения у = х1·х2, или у = х1х2, или у = х1Λх2. Обозначение элемента в схеме приведено на рис. 40.
Рис.
40. Конъюнктор
Таблица соответствия для конъюнкции
х1 |
х2 |
у=х1·х2 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
1 |
1 |
Таблица 2 Конъюнкция
2) Дизъюнкция (операция "или", логическое сложение). Дизъюнкция нескольких переменных равна 1, если хотя бы одна из переменных равна 1. Дизъюнкция обозначается в виде суммы: у = х1+х2, или у = х1Vх2. Обозначение элемента в схеме приведено на рис.42.
Рис.42.
Дизъюнктор
Таблица соответствия для дизъюнкции
х1 |
х2 |
у=х1+х2 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
Таблица 3 Дизъюнкция
3) Инверсия (операция "не", логическое отрицание). Обозначение элемента в схеме приведено на рис 43.
Рис.43
Таблица соответствия для инверсии
х |
у= |
0 |
1 |
1 |
0 |
Возможны комбинированные операции. Примеры элементов, выполняющих такие действия приведены на рис.44.
Рис.
44 Комбинированные логические элементы
Система обозначения интегральных схем
В технической документации применяют графическое и буквенное обозначение ИС.
Обозначение ИС на электрических принципиальных схемах
Буквенные обозначения на электрических принципиальных схемах: DD — цифровая ИС; DA — аналоговая ИС.
Функции элемента указываются символами, например:
1 — функция “ИЛИ”; & — функция “И”;
Т — триггер; > — операционный усилитель;
Х:Y — делитель; >104 — усилитель с коэффициентом усиления 10000;
A/# — аналогово-цифровой преобразователь (АЦП).
Электрические измерения
Электрические методы измерения применяются для измерения электрических и неэлектрических величин. К электрическим величинам относят: силу тока, напряжение, мощность и т.п. К неэлектрическим - температуру, влажность, перемещение и т.п.