
- •Пассивные элементы схем замещения
- •Основные законы
- •Анализ электрических цепей постоянного тока Топологические понятия теории электрических цепей
- •Анализ простых электрических цепей Схемы соединения потребителей
- •Условие передачи максимальной мощности от источника к потребителю
- •Нелинейные цепи постоянного тока Основные понятия
- •Последовательное соединение:
- •Расчет (выбор) сечения проводов
- •Переменный электрический ток Электрические цепи однофазного переменного тока
- •Получение переменного тока
- •Характеристики синусоидальных функций
- •Действующее значение переменного тока
- •Векторные диаграммы
- •Переменный ток в цепи с последовательным соединением элементов r, l, c
- •Треугольники напряжений, сопротивлений и мощностей
- •Электрические цепи однофазного переменного тока с параллельным соединением элементов r, l, c
- •Параллельное соединение реальных элементов электрической цепи
- •Комплексный (символический) метод расчета цепей синусоидального тока
- •Трехфазный электрический ток Электрические цепи трехфазного переменного тока
- •Получение трехфазного тока
- •Мощность трехфазного тока
- •Соединения приемников звездой
- •Соотношение между линейным и фазным напряжением
- •Соединение приемников треугольником
- •Магнитные цепи Магнитное поле и его параметры
- •Относительная магнитная проницаемость
- •Петля магнитного гистерезиса
- •Магнитные цепи электротехнических устройств постоянного тока
- •Закон Ома для магнитной цепи
- •Расчет неразветвленной магнитной цепи постоянного тока
- •1.Прямая задача
- •2.Обратная задача
- •Магнитные цепи электротехнических устройств переменного тока
- •Есть амплитудное значение магнитного потока.
- •Свойства ферромагнитных материалов в переменных магнитных полях
- •Трансформаторы
- •Принцип действия однофазного силового трансформатора
- •Электрические машины
- •Асинхронные двигатели
- •Механическая характеристика асинхронного двигателя
- •Синхронные машины
- •Подключение трехфазных двигателей к однофазной сети
- •Машины постоянного тока
- •Способы возбуждения электродвигателей постоянного тока
- •Пуск двигателей постоянного тока
- •Регулирование частоты вращения электродвигателя постоянного тока
- •Механические характеристики электродвигателей постоянного тока
- •Электроснабжение объектов
- •Потребители электрической энергии
- •Структурная схема системы электроснабжения
- •Источники электроснабжения
- •Схемы электроснабжения
- •Трансформаторные подстанции
- •Воздушные линии электропередач
- •Кабельные линии электропередач
- •Качество электроэнергии и пути ее рационального использования
- •Электробезопасность Действие электрического тока на человека
- •Способы защиты от поражения электрическим током в электроустановках
- •Классификация помещений по опасности поражения электрическим током
- •Электроосвещение
- •Основы электроники
- •Полупроводниковые материалы
- •Электронно-дырочный р-n переход
- •Выпрямительные или силовые диоды
- •Переключающие диоды - тиристоры
- •Биполярные транзисторы
- •Предельно-допустимые параметры транзистора
- •Полевые транзисторы
- •Источники вторичного электропитания (выпрямители)
- •Однополупериодный выпрямитель (четвертьмост)
- •Электронные усилители
- •Цифровые устройства Алгебра логики (алгебра Буля)
- •Основные понятия алгебры логики
- •Система обозначения интегральных схем
- •Электрические измерения
- •Погрешности измерений
- •Методы измерений
- •Классификация электроизмерительных приборов
- •Приборы магнитоэлектрической системы
- •Приборы электромагнитной системы
- •Приборы электродинамической системы
- •Компенсационный метод измерений
- •Измерение электрических величин Измерение силы тока
- •Измерение напряжения
- •Измерение сопротивлений
- •Измерение мощности и энергии
- •Дополнительная
Основы электроники
Электроника — наука о взаимодействии заряженных частиц (электронов, ионов) с электромагнитными полями и о методах создания электронных приборов и устройств (вакуумных, газоразрядных, полупроводниковых). Одним из главных направлений электроники является полупроводниковая электроника.
Полупроводниковые материалы
К полупроводниковым материалам относят Ge-германий, Si-кремний, Se-селен, GaAs-арсенид галлия и ряд других. По своему удельному сопротивлению полупроводники занимают промежуточную область между проводниками и диэлектриками. Границы между ними весьма условны, так как при достаточно высокой температуре диэлектрик ведет себя как полупроводник, а любой чистый полупроводник при весьма низких температурах подобен диэлектрику.
При температуре выше абсолютного нуля в полупроводниковом материале часть электронов разрывает ковалентные связи, образующие кристаллическое состояние материала, и переходит в зону проводимости, освобождая энергетические уровни в валентной зоне. Вакантный энергетический уровень в валентной зоне (отсутствие электрона) называют дыркой проводимости, которая в электрическом и магнитном полях ведет себя как частица с положительным зарядом. Такой процесс образования пар электрон проводимости - дырка проводимости называется генерацией пар электрон-дырка. После своего появления дырка проводимости под действием тепловой энергии совершает хаотическое движение в валентной зоне так же, как электрон в зоне проводимости. При этом возможен процесс захвата электронов зоны проводимости дырками валентной зоны. Процесс исчезновения пар электрон-дырка называется рекомбинацией. Этот процесс сопровождается выделением энергии, которая идет на нагрев кристаллической решетки и частично излучается во внешнюю среду.
Если к кристаллу полупроводника приложить электрическое поле, то движение электронов и дырок приобретает некоторую направленность. Таким образом, при температуре выше абсолютного нуля кристалл приобретает способность проводить электрический ток. Такая проводимость называется собственной, а полупроводник — собственным полупроводником. Эта проводимость обычно невелика и увеличивается с повышением температуры.
Если в кристалл германия или кремния добавить примесь элементов третьей или пятой групп таблицы Менделеева, то такой полупроводник называется примесным. Примесные полупроводники обладают значительно большей проводимостью по сравнению с полупроводниками с собственной проводимостью.
Примеси бывают донорные и акцепторные. Донорные примеси отдают свои электроны, создавая в кристалле электронную проводимость, акцепторные — захватывают электроны из решетки основного кристалла, создавая дырочную проводимость примесного полупроводника. В зависимости от типа примесей, вводимых в полупроводник, их разделяют на два типа:
1. Полупроводники р-типа (positive), обладающие положительной проводимостью, обусловленной наличием избыточных положительных зарядов - дырок.
2. Полупроводники п-типа (negative), обладающие отрицательной проводимостью, обусловленной наличием избыточных электронов.
Под действием внешнего электрического поля эти избыточные заряды приобретают направленное движение, образуя ток, называемый дрейфовым.