Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебное пособие.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
17.62 Mб
Скачать

4.4.3. Некоторые способы получения

ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ

СХЕМА ПОЛУЧЕНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ НА АЭС

Различают аэс по типу реакторов; по виду отпускаемой энергии.

1. По типу реакторов атомные электростанции классифицируются в соответствии с установленными на них реакторами:

реакторы на тепловых нейтронах, использующие специальные замедлители для увеличения вероятности поглощения нейтрона ядрами атомов топлива;

Реактор на тепловых нейтронах  ядерный реактор, использующий для поддержания цепной ядерной реакции нейтроны тепловой части спектра энергии  теплового спектра. Использование нейтронов теплового спектра выгодно потому, что сечение взаимодействия ядер урана-235 с нейтронами, участвующих в цепной реакции, растет по мере снижения энергии нейтронов, а ядер урана-238 остается при низких энергиях постоянным. В результате, самоподдерживающаяся реакция при использовании природного урана, в котором делящегося изотопа 235U всего 0,7%, невозможна на быстрых нейтронах (спектра деления) и возможна на медленных (тепловых).

реакторы на легкой воде;

Легководный реактор  ядерный реактор, в котором для замедления нейтронов и/или в качестве теплоносителя используется обычная вода H2O. Термин используется для отличия от тяжеловодного реактора, в котором в качестве замедлителя нейтронов используется тяжёлая вода D2O. В тяжелой воде оба атома водорода заменены на атом тяжёлого водорода — дейтерия. Обычная вода, в отличие от тяжелой воды, не только замедляет, но и в значительной степени поглощает нейтроны (по реакции 1H + n = ²D). Поэтому если в легководном реакторе вода используется и как теплоноситель, и как замедлитель нейтронов (например, в реакторах ВВЭР, PWR, ВК-50), то реактор не может работать на природном уране, для работы такого реактора требуется предварительное обогащение урана. Если же замедлителем нейтронов служит графит, а обычная вода используется только как теплоноситель, то реактор в принципе может работать на природном уране или на уране низкого обогащения (как, например, реактор РБМК). Тяжеловодный реактор также может работать на природном уране, в этом одно из основных его достоинств.

реакторы на тяжелой воде;

Тяжеловодный ядерный реактор (англ. Pressurised Heavy Water Reactor (PHWR))  ядерный реактор, который в качестве теплоносителя и замедлителя использует D2O  тяжелую воду. Так как дейтерий имеет меньшее сечение поглощения нейтронов, чем лёгкий водород, такие реакторы имеют улучшенный нейтронный баланс (то есть для них требуется менее обогащенный уран), что позволяет использовать в качестве топлива природный уран в энергетических реакторах или использовать «лишние» нейтроны для наработки изотопов. В энергетических реакторах использование природного урана значительно снижает расходы на топливо, хотя экономический эффект несколько сглаживается большей ценой энергоблока и теплоносителя. Наиболее известным реактором этого типа является канадский CANDU. Помимо самой Канады, реакторы CANDU экспортировались в Китай, Южную Корею, Индию, Румынию, Аргентину и Пакистан.

реакторы на быстрых нейтронах;

Реактор на быстрых нейтронах  ядерный реактор, использующий для поддержания цепной ядерной реакции нейтроны с энергией > 105 эВ. Проектирование и строительство дорогостоящих реакторов на быстрых нейтронах оправданно, так как на каждый захват нейтрона в активной зоне такого реактора испускается в 1,5 раза больше нейтронов деления, чем в активной зоне реактора на тепловых нейтронах. Следовательно, для переработки ядерного сырья в реакторе на быстрых нейтронах можно использовать значительно большую долю нейтронов. Это главная причина, из-за которой проводят широкие исследования в области применения реакторов на быстрых нейтронах.

В мире осталась единственная страна с действующим быстрым энергетическим реактором  это Россия, реактор БН-600 III блок, Белоярская АЭС.

субкритические реакторы, использующие внешние источники нейтронов;

Примером субкритического реактора являются ториевые реакторы. В нем используется не опасный уран, а другой элемент  торий. Известно, что его запасов на планете в 3-5 раз больше, чем таковых урана. Более того, практически весь добытый торий может использоваться в качестве топлива (для сравнения  только 0,7 % урана, добытого из урановой руды, может стать ядерным топливом). Проще говоря, в энергетическом выражении одна тонна добываемого тория эквивалентна 200 т урановой руды или 3,5 млн т угля.

термоядерные реакторы;

Управляемый термоядерный синтез (УТС)  синтез более тяжелых атомных ядер из более легких с целью получения энергии, который, в отличие от взрывного термоядерного синтеза (используемого в термоядерных взрывных устройствах), носит управляемый характер. Солнце  природный термоядерный реактор. Водород  самый распространенный элемент во Вселенной  является наилучшим горючим для реакции синтеза. В 2011 г. управляемый термоядерный синтез еще не осуществлен в промышленных масштабах. Строительство международного экспериментального термоядерного реактора (ITER) находится в начальной стадии.