Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
глава_2.doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
4.42 Mб
Скачать

2.2.6 Нечеткое пид управление (Fuzzy pid Control)

Нечеткие контроллеры (Fuzzy controllers) позволяют реализовывать стратегии управления близкие человеку и представляют собой эффективную альтернативу (или дополнение) классическим системам управления.

Примечание. Будем использовать два термина для перевода «Fuzzy controllers»: нечеткие контроллеры либо нечеткие регуляторы (если речь идет о нечетком ПИД- регуляторе).

Структура нечеткого ПИД - регулятора (Fuzzy PID Controller) показана на рис. 2.18.

Рис. 2.18. Структура нечеткого ПИД – регулятора

Примечание. На рис. 2.18 используются следующие обозначения:

- вектор состояния объекта управления (ОУ) (a plant), - желаемое состояние ОУ (цель управления), называемое также как «задающий сигнал» (a reference signal); - ошибка управления (control error), вычисляемая как , где - скорость ошибки управления, - интегральная ошибка, - сила управления, где , где - универсумы для ошибки управления, ее производной и интегральной части, а также силы управления, соответственно.

Отношение «вход/выход» для ПИД-регулятора выражается следующим образом:

,

где называются коэффициентами усиления ПИД-регулятора и (пропорциональный, интегральный и производный коэффициенты). Выбирая различные значения , очевидно, получаем различное поведение ОУ.

Таким образом, функционирования ОУ существенным образом зависит от выбранных параметров ПИД-регулятора. Поэтому, для разработчиков системы управления становится весьма актуальной проблема эффективного способа выбора этих параметров для того, чтобы обеспечить лучшее качество управления.

Как определить эффективный способ выбора параметров управления?

В случае классического метода управления, коэффициенты усиления ПИД-регулятора являются константами, т.е. постоянными величинами.

Чтобы усилить возможности традиционных (классических) ПИД-регуляторов, прежде всего, введем переменные коэффициенты усиления ПИД-регулятора:

Ясно, что в этом случае мы получаем больше возможностей для варьирования значениями вектора , и для улучшения качества управления.

Далее, будем использовать нечеткий логический подход. Нечеткое множество управления , определенное с помощью алгоритма нечеткого вывода, в общем виде может быть представлено следующей вычислительной процедурой:

,

где “ ” – композиционный оператор (смотри формулу 2.2), - нечеткие множества, заданные на соответствующих универсумах, и есть совокупность нечетких отношений (нечетких правил), содержащихся в базе знаний нечеткого ПИД-регулятора.

Примечание. В дальнейшем будем использовать сокращенное название нечеткого ПИД-регулятора как НР.

Установив один раз нечеткие правила, с помощью нечеткого вывода мы можем реализовывать стратегии управления. Ядром нечеткого ПИД-регулятора является система нечеткого вывода Сугено.

Входные переменные для нечеткого вывода: ошибка управления, ее производная и интеграл.

Выходные переменные нечеткого вывода: параметры.

БЗ НР состоит из следующих нечетких правил.

Если , - числа функций принадлежности для описания ошибки управления, ее производной и интегральной компоненты, то полная база нечетких правил содержит нечетких правил.

Полная база выглядит следующим образом:

ЕСЛИ И И есть ,ТО

ЕСЛИ И И есть , ТО

ЕСЛИ И И есть , ТО

ЕСЛИ И И есть , ТО

ЕСЛИ И И есть ТО ,

где , и – функции принадлежности для описания значений , , и , соответственно. , и - реальные числа, удовлетворяющие условию:

.

Согласно нечеткой модели Сугено (нулевого порядка), выходное значение вычисляется следующим образом:

, , ,

где .

Примечание. В НР регуляторах могут использоваться более простые правила в случае, если вместо ПИД управления использовать П-управление (только параметр, ), или ПД ( ), или ПИ ( ) управление.