Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теория упругости.doc
Скачиваний:
4
Добавлен:
01.07.2025
Размер:
2.37 Mб
Скачать

Исправления к тому - X «физическая кинетика», 1979

Страница

Строка.

Напечатано

Должно быть

С—ф

<Р—С

269

5 снизу

- J -

... J ...

270

5 сверху

0

С — оо

0

С — —оо

270

12 сверху

...e-'(a+p)t.t>

...е~':<a+Pc0s4|)'t...

270

1 снизу

значение —оо.

значение оо.

292

2 снизу

1>а

L » а

391

2 сверху

...= pd|v..

...= р.0ф...

439

3 сверху

возрастает

уменьшается

439

4 сверху

а</

б>1

482

(94,13)

= R-IGR =

= Г84ц« =

524

1 снизу

При a < 0 ...

При a > 0 ...

Исправления к тому IV «квантовая электродинамика», 1980

Страница

Строка

Напечатано

Должно быть

от* s

247 254

399 425

425

(57,10) (59,6)

  1. снизу

  2. сверху

16 Сверху

{

о = 2яг5а* ... <н<2/п85 s

S

I ШХ8 \

(«юте \)

2ее' 32я... ms

а— 2яг6а*... (Cikhi =••• >и>2т86—<

_exp(i^M , в87 + 8'

1Если колебания перпендикулярны плоскости падения, то волна отражается целиком в виде такой же волны, так что Rt = 1,

2) В силу свойств симметрии тензора Я^!т имеем

hhtmkhkl = ^himlkhkl = ^mlhikhkl-

Последнее выражение отличается от первого только обозначением немых индек­сов k, I, т. е. тензор hihlnfikki действительно симметричен по индексам i, т.

3) Волновой вектор k = 2я/Я, где X — длина волны. Поэтому, согласно (25,9), скорость U должна была бы неограниченно возрастать при К-уО. Фи­зическая бессмысленность этого результата связана с тем, что формула (25,9) в действительности неприменима к слишком коротким волнам,

4) Мы говорим здесь о внутренней энергии 8, а не о свободной энергии F, поскольку речь идет об адиабатических колебаниях.

5) Мы говорим здесь о внутренней энергии 8, а не о свободной энергии F, поскольку речь идет об адиабатических колебаниях.

6) Известным примером такого рода дефектов является тонкая двойниковая

7прослойка в кристалле.

8) Известным примером такого рода дефектов является тонкая двойниковая

9*) Физический смысл этой и других задач, относящихся к изотропной среде, условен, поскольку реальные дислокации по самому своему существу свой­ственны лишь кристаллам, т. е. анизотропной среде. Эти задачи, однако, пред­ставляют определенный иллюстративный интерес.

10s) Во всех задачах о лрямолинейных дислокациях принимаем вектор т в от­рицательном направлении оси г.

11Эти оценки имеют общий характер и справедливы по порядку величины для любой (не только винтовой) дислокации. Следует отметить, что фактически значения 1д {ЦЬ) обычно не столь^ велики, так что энергия «сердцевины» состав­ляет заметную часть полной энергии дислокации.

12Эти оценки имеют общий характер и справедливы по порядку величины для любой (не только винтовой) дислокации. Следует отметить, что фактически значения 1д {ЦЬ) обычно не столь^ велики, так что энергия «сердцевины» состав­ляет заметную часть полной энергии дислокации.

13Эти оценки имеют общий характер и справедливы по порядку величины для любой (не только винтовой) дислокации. Следует отметить, что фактически значения 1д {ЦЬ) обычно не столь^ велики, так что энергия «сердцевины» состав­ляет заметную часть полной энергии дислокации.

14Эти оценки имеют общий характер и справедливы по порядку величины для любой (не только винтовой) дислокации. Следует отметить, что фактически значения 1д {ЦЬ) обычно не столь^ велики, так что энергия «сердцевины» состав­ляет заметную часть полной энергии дислокации.

15Эти оценки имеют общий характер и справедливы по порядку величины для любой (не только винтовой) дислокации. Следует отметить, что фактически значения 1д {ЦЬ) обычно не столь^ велики, так что энергия «сердцевины» состав­ляет заметную часть полной энергии дислокации.

16Эти оценки имеют общий характер и справедливы по порядку величины для любой (не только винтовой) дислокации. Следует отметить, что фактически значения 1д {ЦЬ) обычно не столь^ велики, так что энергия «сердцевины» состав­ляет заметную часть полной энергии дислокации.

17Эти оценки имеют общий характер и справедливы по порядку величины для любой (не только винтовой) дислокации. Следует отметить, что фактически значения 1д {ЦЬ) обычно не столь^ велики, так что энергия «сердцевины» состав­ляет заметную часть полной энергии дислокации.

18Эти оценки имеют общий характер и справедливы по порядку величины для любой (не только винтовой) дислокации. Следует отметить, что фактически значения 1д {ЦЬ) обычно не столь^ велики, так что энергия «сердцевины» состав­ляет заметную часть полной энергии дислокации.

19Эти оценки имеют общий характер и справедливы по порядку величины для любой (не только винтовой) дислокации. Следует отметить, что фактически значения 1д {ЦЬ) обычно не столь^ велики, так что энергия «сердцевины» состав­ляет заметную часть полной энергии дислокации.

20Эти оценки имеют общий характер и справедливы по порядку величины для любой (не только винтовой) дислокации. Следует отметить, что фактически значения 1д {ЦЬ) обычно не столь^ велики, так что энергия «сердцевины» состав­ляет заметную часть полной энергии дислокации.

21Эти оценки имеют общий характер и справедливы по порядку величины для любой (не только винтовой) дислокации. Следует отметить, что фактически значения 1д {ЦЬ) обычно не столь^ велики, так что энергия «сердцевины» состав­ляет заметную часть полной энергии дислокации.

22Эти оценки имеют общий характер и справедливы по порядку величины для любой (не только винтовой) дислокации. Следует отметить, что фактически значения 1д {ЦЬ) обычно не столь^ велики, так что энергия «сердцевины» состав­ляет заметную часть полной энергии дислокации.

23) Так, для передвижения изображенной на рис. 22 краевой дислокации в ее плоскости скольжения (плоскость х, г) достаточно сравнительно небольших Перемещений атомов, в результате которых «лишними» будут оказываться все более удаленные от плоскости у, г кристаллические полуплоскости.

24) При выводе уравнений движения виртуальные пластическую и упругую деформации надо рассматривать как независимые переменные. Интересуясь урав­нением движения дислокации, надо рассматривать только пластическую дефор­мацию.

25Представляется очевидным, что всестороннее (равномерное) сжатие кри­сталла не должно приводить к появлению силы f; выражение (28,7) этим свой­ством обладает.

8) При выводе используется также формула еше1тн ~ ^km^in ~ *Ал» и уравнения равновесия да^/дхт =0.

26) Мы не занимаемся здесь вопросом об определении самого движения дисло­каций по приложенным к телу силам. Решение этого вопроса требует детального изучения микроскопического механизма движения дислокаций и их торможения на различных дефектах, которое должно производиться с учетом фактическая данных о реальных кристаллах.

27) Под механической энергией здесь подразумевается сумма кинетической энергии макроскопического движения в упругом теле и его потенциальной (упру­гой) энергии, обусловленной наличием деформации.

28Ср. аналогичные рассуждения ио поводу вязкой жидкости (VI, § 15).

^ Напомним, что существование диссипативной функции является, след­ствием принципа симметрии квиетических коэффициентов Онсагера. Именно этот принцип приводит к первому из равенств (33,4) (для коэффициентов в линей­ных соотношениях (33,7)), эквивалентному факту существования квадратичной формы (33,3). Это будет прямо показано по аналогичному поводу в-§ 41,

29) Напомним, что если теплопроводящая среда ограничена плоскостью х = О, избыточная температура которой изменяется периодически по закону 7" = = T'Qe~ia>t, то распределение температуры в среде описывается «температурной

волной» _

Г = Г0 ехр [-Ш - (1 + I) х Уь>/2%)

30(см. VI, § 52). .

31(см. VI, § 52). .

32а) Такой же частотной зависимостью характеризуется поглощение звука, распространяющегося в жидкости или в газе вблизи твердой стенки (например, по трубе); см. VI, § 79.

33(см. VI, § 52). .

34(см. VI, § 52). .

35(см. VI, § 52). .

36(см. VI, § 52). .

37(см. VI, § 52). .

38(см. VI, § 52). .

39 Нематики, не инвариантные относительно инверсии, неустойчивы по отношению к деформации, превращающей их в так называемые холестерики — см, § 43

40) В этой главе для упрощения записи формул мы будем пользоваться при­нятым в современной литературе кратким обозначением оператора дифферен­цирования по координатам; dt = dldx^

41) Эта задача решалась Осееном (С. W. Oseen, 1933) и Франком (F. С. Frank, 1958) для частного случая нематика, в котором Ki = Кз. Излагаемое ниже общее решение принадлежит И. Е. Дзялошинскому (1970).

42) В подынтегральном выражении ниже опущена полная производная (1 — —a cos 2\р) 2г|>' =(2i|)—a sin 2ip)', что не влияет на формулировку вариационной задачи. Мы выводим здесь уравнение равновесия заново, не прибегая к общим уравнениям (36,7—8), что фактически потребовало бы более громоздких вычисле­ний.

J) Отметим, что в «вырожденном» случае Ki = К$, a = О существуют реше­ния с любыми ф = const.

') Если рассматривать подынтегральное выражение в (37,8) как функцию Лагранжа одномерной механической системы (причем играет роль обобщенной координаты, ф — роль времени), то (37,12) есть интеграл энергии.

43) В подынтегральном выражении ниже опущена полная производная (1 — —a cos 2\р) 2г|>' =(2i|)—a sin 2ip)', что не влияет на формулировку вариационной задачи. Мы выводим здесь уравнение равновесия заново, не прибегая к общим уравнениям (36,7—8), что фактически потребовало бы более громоздких вычисле­ний.

J) Отметим, что в «вырожденном» случае Ki = К$, a = О существуют реше­ния с любыми ф = const.

') Если рассматривать подынтегральное выражение в (37,8) как функцию Лагранжа одномерной механической системы (причем играет роль обобщенной координаты, ф — роль времени), то (37,12) есть интеграл энергии.

44) В подынтегральном выражении ниже опущена полная производная (1 — —a cos 2\р) 2г|>' =(2i|)—a sin 2ip)', что не влияет на формулировку вариационной задачи. Мы выводим здесь уравнение равновесия заново, не прибегая к общим уравнениям (36,7—8), что фактически потребовало бы более громоздких вычисле­ний.

J) Отметим, что в «вырожденном» случае Ki = К$, a = О существуют реше­ния с любыми ф = const.

') Если рассматривать подынтегральное выражение в (37,8) как функцию Лагранжа одномерной механической системы (причем играет роль обобщенной координаты, ф — роль времени), то (37,12) есть интеграл энергии.

45) В подынтегральном выражении ниже опущена полная производная (1 — —a cos 2\р) 2г|>' =(2i|)—a sin 2ip)', что не влияет на формулировку вариационной задачи. Мы выводим здесь уравнение равновесия заново, не прибегая к общим уравнениям (36,7—8), что фактически потребовало бы более громоздких вычисле­ний.

J) Отметим, что в «вырожденном» случае Ki = К$, a = О существуют реше­ния с любыми ф = const.

') Если рассматривать подынтегральное выражение в (37,8) как функцию Лагранжа одномерной механической системы (причем играет роль обобщенной координаты, ф — роль времени), то (37,12) есть интеграл энергии.

46проективная плоскость.

47проективная плоскость.

48проективная плоскость.

49проективная плоскость.

50Деформация контура может отражать собой как изменение контура ^ в физическом пространстве, так и изменение самого поля п (г).

51) При целом N подобные рассуждения не привели бы к аналогичному вы­воду, поскольку дисклинации целого индекса устранима, а отображение с целым N отвечает неустранимой особенности.

52) Мы, частично, следуем изложению D. Forster, Т. С. Lubensky, Р, С, Mar­tin, J. Swift P. S, Pershan (1971).

53Сама же функция 2R дает (как и в § 33) скорость диссипации механиче­ской энергии (ср. VI, § 79).

54Сама же функция 2R дает (как и в § 33) скорость диссипации механиче­ской энергии (ср. VI, § 79).

55Подчеркнем, что Е относится к заданному (единичному) объему, а пере­менным является число N частиц (молекул) в этом объеме. В V химический по­тенциал везде относился к одной частице, т. е. определялся как р = dEldN. Поскольку = p/m (m — масса молекулы), то принятое здесь определение отли­чается от определения в V лищь множителем т. Во избежание недоразумений при сравнении с термодинамическим соотношением (3,2а), напомним, что здесь Е есть внутренняя энергия единицы объема в точном смысле этого слова, между тем как в § 3 величина 8 определена как энергия количества вещества, заклю­ченного в единице объема недеформированного тела.

56Подчеркнем, что Е относится к заданному (единичному) объему, а пере­менным является число N частиц (молекул) в этом объеме. В V химический по­тенциал везде относился к одной частице, т. е. определялся как р = dEldN. Поскольку = p/m (m — масса молекулы), то принятое здесь определение отли­чается от определения в V лищь множителем т. Во избежание недоразумений при сравнении с термодинамическим соотношением (3,2а), напомним, что здесь Е есть внутренняя энергия единицы объема в точном смысле этого слова, между тем как в § 3 величина 8 определена как энергия количества вещества, заклю­ченного в единице объема недеформированного тела.

57) Поскольку Е0 = Е0 (р, S), то (d{£d)P) s = (dtE) Р) s.

58*) Ее иногда называют реактивной частью (отсюда индекс (г), которым мы снабдили ее обозначение).

59*) Ее иногда называют реактивной частью (отсюда индекс (г), которым мы снабдили ее обозначение).

60) Эта ситуация не уникальна: напомним эффект Холла в электродинамике проводящих тел; он тоже не связан с диссипацией-

61) Напомним, что эта скорость выражается через величины ха, Ха форму­лой /Г = -23 хаХа.

а

62) В литературе о величинах ха и Ха часто говорят соответственно как о тер-

63не установился.

64нединамических потоках и термодинамических силах.

65) В литературе о величинах ха и Ха часто говорят соответственно как о тер-

66нединамических потоках и термодинамических силах.

67Лесли (F. М. Leslie, 1966) и Породи (О, Parodi, 1970). Общепринятый выбор опре­делений коэффициентов вязкости нематиков в литературе, по-видимому, еще

68) Мы обозначаем здесь эту величину как Г, во избежание путаницы с дис-

699) Для упрощения записи формул индекс у % везде ниже в задачах опускаем.

709) Для упрощения записи формул индекс у % везде ниже в задачах опускаем.

71сипативным коэффициентом у,

72) Мы обозначаем здесь эту величину как Г, во избежание путаницы с дис-

73) В этом смысле область применимости развиваемой здесь механики смек­

74допускались поля директора п (г), сколь угодно сильно отличающиеся от неде­

75тиков более узка, чем для рассмотренной выше механики нематиков, в которой

76L> Эта неустойчивость а «алогична рассмотренной в § 21 неустойчивости сжимаемого прямого стержня.

77) Значение £кр определяет лишь абсолютную величину «волнового век­тора» возмущения в плоскости х, у, но не полную симметрию возникающей де­формации. Определение последней требует выхода за границы приближения, отвечающего линейным (по 6и) уравнениям равновесия (йитуация здесь анало­гично той, которая имеет место для конвективной неустойчивости плоскопарал­лельного слоя жидкости — см. VI, § 57). См.ХМпеиЛ М. Journ. Chem. Phys., 1974, v. 60, p. 1081.

*) Остальные компоненты hikim можно выбрать так, чтобы было Fx = «к Fa « 0; в формулу {45,4) эти компоненты не входят.

78Здесь и ниже изменением модулей упругости вдоль среды пренебрегаем.

79Здесь и ниже изменением модулей упругости вдоль среды пренебрегаем.

80Здесь и ниже изменением модулей упругости вдоль среды пренебрегаем.

81А также отсутствием члена с; (dj£). Такой член, однако, являлся бы в данном случае малой величиной третьего порядка, которой можно пренебречь по сравнению с величинами второго порядка.

82См. Ксщ Е. И., Лебедев В. В. — ЖЭТФ, 1983, т, 85, с. 2019.

83См. Ксщ Е. И., Лебедев В. В. — ЖЭТФ, 1983, т, 85, с. 2019.

844S8'

858я4 ..

868я4 ..

878я4 ..