
- •Глава I
- •§ 1. Обобщенные координаты
- •§ 2. Принцип наименьшего действия
- •§2] Принцип наименьшего действия и
- •§ 3. Принцип относительности Галилея
- •§ 4. Функция Лагранжа свободной материальной точки
- •§ 5. Функция Лагранжа системы материальных точек
- •3. Плоский маятник, точка подвеса которого:
- •§ 6. Энергия
- •§ 7. Импульс
- •§ 9. Момент импульса
- •1. Найти выражения для декартовых компонент и абсолютной величины момента импульса частицы в цилиндрических координатах г, ф, г.
- •§ 13. Механическое подобие
- •1. Как относятся времена движения по одинаковым траекториям точек с различными массами при одинаковой потенциальной энергии?
- •2. Как изменяются времена движения по одинаковым траекториям при изменении потенциальной энергии на постоянный множитель?
- •Глава III
- •§11. Одномерное движение
- •§12. Определение потенциальной энергии по периоду колебаний
- •§ 13. Приведенная масса
- •§ 14. Движение в центральном поле
- •2. Проинтегрировать уравнения движения материальной точки, движущейся по поверхности конуса (с углом 2а при вершине), расположенного вертикально, вершиной вниз, в поле тяжести.
- •3 Проинтегрировать уравнения движения плоского маятника, точка подвеса которого (с массой mt в ней) способна совершать движение в горизонтальном направлении (см. Рис. 2).
- •§ 15. Кеплерова задача
- •. Бяаут2 бяу
- •Глава IV
- •§ 16. Распад частиц
- •§ 17. Упруги* столкновения частиц
- •4) Если функция р'(х) многозначна, то надо, очевидно, взять сумму таких выражений по всем ветвям этой функции,
- •2. Для того же случая выразить эффективное сечение как функцию энергии е, теряемой рассеиваемыми частицами.
- •3. Как зависит эффективное сечение от скорости w«. Частиц при рассеянии в поле u оо /—п?
- •Do°ovZmdo.
- •§ 19. Формула Резерфорда
- •§ 20. Рассеяние под малыми углами
- •1. Получить формулу (20,3) из формулы (18,4).
- •Глава V
- •§ 21. Свободные одномерные колебания
- •4) Подчеркнем, однако, что величина т совпадает с массой только, если х есть декартова координата частицы!
- •§ 22. Вынужденные колебания
- •3. То же в случае постоянной силы Ро, действующей в течение ограни-ченного времени т (рис. 25).
- •§ 23. Колебания систем со многими степенями свободы
- •&2 _ Z klkAlAk _
- •1. Определить колебания системы с двумя степенями свободы, если ее функция Лагранжа
- •2. Определить малые колебания двойного плоского маятника (рис, 1),
- •§ 24. Колебания молекул
- •2. То же для молекулы aba треугольной формы (рис. 29),
- •§ 26. Вынужденные колебания при наличии трения
- •§ 27. Параметрический резонанс
- •§ 28. Ангармонические колебания
- •§ 29. Резонанс в нелинейных колебаниях
- •§ 30. Движение в быстро осциллирующем поле
- •1. Определить положения устойчивого равновесия маятника, точка под- веса которого совершает вертикальные колебания с большой частотой
- •Глава VI
- •§ 31. Угловая скорость
- •§ 32. Тензор инерции
- •1. Определить главные моменты инерции для молекул, рассматриваемых «ак системы частиц, находящихся на неизменных расстояниях друг от друга, в следующих случаях:
- •2. Определить главные моменты инерции сплошных однородных тел.
- •3. Определить частоту малых колебаний физического маятника (твердое тело, качающееся в поле тяжести около неподвижной горизонтальной оси).
- •7. Найти кинетическую энергию однородного конуса, катящегося по пло- скости.
- •10. То же, если ось ав наклонена, а эллипсоид симметричен относительно этой оси (рис. 45).
- •§ 33. Момент импульса твердого тела
- •§ 34. Уравнения движения твердого тела
- •§ 35. Эйлеровы углы
- •1. Привести к квадратурам задачу о движении тяжелого симметрического волчка с неподвижной нижней точкой (рис.48).
- •2. Найти условие, при котором вращение волчка вокруг вертикальной оси будет устойчивым.
- •3. Определить движение волчка в случае, когда кинетическая энергия его собственного вращения велика по сравнению с энергией в поле тяжести (так называемый «быстрый» волчок).
- •§ 36. Уравнения Эйлера
- •§ 36] Уравнения эйлера 14g.
- •§ 37. Асимметрический волчок
- •1. Определить свободное вращение волчка вокруг оси, близкой к оси инерции хз (или XI).
- •§ 38. Соприкосновение твердых тел
- •1. Пользуясь принципом д'Аламбера, найти уравнения движения однородного шара, катящегося по плоскости под действием приложенных к нему внешней силы f и момента сил к.
- •2. Однородный стержень bd весом р и длиной / опирается на стену, как показано на рис. 52; его нижний конец в удерживается нитью ав, Определить реакцию опор и натяжение нити.
- •§ 39. Движение в неинерциальной системе отсчета
- •1. Найти отклонение свободно падающего тела от вертикали, обусловлен- ное вращением Земли. (Угловую скорость вращения считать малой.)
- •2. Определить отклонение от плоскости для тела, брошенного с поверх- ности Земли с начальной скоростью v0.
- •3. Определить влияние, оказываемое вращением Земли на малые колебания маятника (так называемый маятник Фуко).
- •Глава VII
- •§ 40. Уравнения Гамильтона
- •1. Найти функцию Гамильтона для одной материальной точки в декарто- вых, цилиндрических и сферических координатах.
- •2. Найти функцию Гамильтона частицы в равномерно вращающейся си- стеме отсчета.
- •3. Найти функцию Гамильтона системы из одной частицы с массой м и п частиц с массами т, с исключенным движением центра инерции (см. Задачу
- •§ 41. Функция Payca
- •§ 42. Скобки Пуассона
- •2. Определить скобки Пуассона, составленные из компонент м. Решение. Прямое вычисление по формуле (42,5) дает:
- •3. Показать, что
- •4. Показать, что
- •§ 43. Действие как функция координат
- •§ 44. Принцип Мопертюи
- •§ 45. Канонические преобразования
- •§ 46. Теорема Лиувилля
- •§ 47. Уравнение Гамильтона — Якоби
- •§ 48. Разделение переменных
- •1. Найти полный интеграл уравнения Гамильтона—Якоби для движения
- •§ 49. Адиабатические инварианты
- •§ 50. Канонические переменные
- •§ 51. Точность сохранения адиабатического инварианта
- •1. Оценить д/ для гармонического осциллятора с частотой, медленно меняющейся по закону
- •§ 52. Условно-периодическое движение
§ 9. Момент импульса
Перейдем к выводу закона сохранения, возникновение которого связано с изотропией пространства.
Эта изотропия означает, что механические свойства замкнутой системы не меняются при любом повороте системы как целого в пространстве. В соответствии с этим рассмотрим бесконечно малый поворот системы и потребуем, чтобы ее функция Лагранжа при этом не изменилась.
Введем вектор бф бесконечно малого поворота, абсолютная величина которого равна углу бф поворота, а направление совпадает с осью поворота (причем так, что направление поворота отвечает правилу винта по отношению к направлению бф).
| бг | = г sin 9 • бф
(рис. 5)'. Направление же вектора перпендикулярно к плоскости, проходящей через г и бф. Поэтому ясно, что
бг = [бф.г]. (9,1)
При повороте системы меняется направление не только радиус-векторов, но и скоростей всех ча- рис. 5 стиц, причем все векторы преобразуются по одинаковому закону. Поэтому приращение скорости относительно неподвижной системы координат
6v = [бф • v]. (9,2)
Подставив эти выражения в условие неизменяемости функции Лагранжа при повороте
а
заменяем производные 5L/dva = pa, 5L/<9ra = pfl:
Z (Pa [бф • Гa] + ра [бф • Va]) = О,
a
или, производя циклическую перестановку множителей и вынося бф за знак суммы:
бФ Yj (taPol + tVoP"])= 6<Р 1Г Z ^ГаРо1 = °*
а а
Ввиду произвольности бф отсюда следует, что
-^-£[rapa]=o,
т. е. мы приходим к выводу, что при движении замкнутой системы сохраняется векторная величина
M=£[r0pJ, (9,3)
а
называемая моментом импульса {или просто моментом\ систе* мы1). Аддитивность этой величины очевидна, причем, как и у импульса, она не зависит от наличия или отсутствия взаимодействия между частицами.
Этим исчерпываются аддитивные интегралы движения. Таким образом, всякая замкнутая система имеет всего семь таких интегралов: энергия и по три компоненты векторов импульса и момента.
Поскольку в определение момента входят радиус-векторы частиц, то его значение, вообще говоря, зависит от выбора начала координат. Радиус-векторы га и т'а одной и той же точки по отношению к началам координат, смещенным на вектор а, связаны соотношением ra = ra + a. Поэтому имеем:
М == £ [Гара] = Z [Г'ара] + [а £ ра] а a L a J
или
М = М' + [аР]. (9,4)
Из этой формулы видно, что только в том случае, когда система как целое покоится (т. е. Р = 0), ее момент не зависит от выбора начала координат. На законе сохранения момента эта неопределенность его значения, разумеется, не сказывается, так как у замкнутой системы импульс тоже сохраняется.
Выведем также формулу, связывающую значения момента импульса в двух различных инерциальных системах отсчета К и /С', из которых вторая движется относительно первой со скоростью V. Будем считать, что начала координат в системах К и К' в данный момент времени совпадают. Тогда радиус-векторы частиц в обеих системах одинаковы, скорости же связаны посредством va = va + V. Поэтому имеем:
М = Z "la [l"aVa] = Y.ttla [ТаЧ'а] + Z ГПа [Га\].
а а а
Первая сумма в правой стороне равенства есть момент М' в системе К'; введя во вторую сумму радиус-вектор центра инерции согласно (8,3), получаем:
M = M' + n[RV]. (9,5)
Эта формула определяет закон преобразования момента импульса при переходе от одной системы отсчета к другой, подобно тому, как для импульса и энергии аналогичные законы даются формулами (8,1) и (8,5).
Если система отсчета К' есть та, в которой данная механическая система покоится как целое, то V есть скорость центра инерции последней, а p,V — ее полный импульс Р (относительно К).
') Употребляются также названия вращательный момент или угловой момент.
Тогда
M = M'+[RP]. (9,6)
Другими словами, момент импульса М механической системы складывается из ее «собственного момента» относительно системы отсчета, в которой она покоится, и момента [RP], связанного с ее движением как целого.
Хотя закон сохранения всех трех компонент момента (относительно произвольного начала координат) имеет место только для замкнутой системы, в более ограниченном виде этот закон может иметь место и для систем, находящихся во внешнем поле. Из приведенного выше вывода очевидно, что всегда сохраняется проекция момента на такую ось, относительно которой данное поле симметрично, и потому механические свойства системы не меняются при любом повороте вокруг этой оси; при этом, конечно, момент должен быть определен относительно какой-нибудь точки (начала координат), лежащей на этой же оси.
Наиболее важным случаем такого рода является поле с центральной симметрией, т. е. поле, в котором потенциальная энергия зависит только от расстояния до некоторой определенной точки (центра) в пространстве. Очевидно, что при движении в таком поле сохраняется проекция момента на любую ось, проходящую через центр. Другими словами, сохраняется вектор М момента, но определенного не относительно произвольной точки пространства, а относительно центра поля.
Другой пример: однородное поле вдоль оси z, в котором сохраняется проекция Мг момента, причем начало координат может быть выбрано произвольным образом.
Отметим, что проекция момента на какую-либо ось (назовем ее z) может быть найдена дифференцированием функции Лагранжа по формуле
М'-1.Ж' (9'7)
где координата ф есть угол поворота вокруг оси г. Это ясно уже из характера изложенного выше вывода закона сохранения момента, но в том же можно убедиться и прямым вычислением. В цилиндрических координатах г, q>, г имеем (подставляя
Ха = Га COS фа, уа = Га sin фв) :
Мг=Т,та(хауа - уаха) = £ таг1фа. (9,8)
а а
С другой стороны, функция Лагранжа в этих переменных имеет вид
а
и ее подстановка в (9,7) приводит к тому же выражению (9,8).
Задачи