
- •Глава I
- •§ 1. Обобщенные координаты
- •§ 2. Принцип наименьшего действия
- •§2] Принцип наименьшего действия и
- •§ 3. Принцип относительности Галилея
- •§ 4. Функция Лагранжа свободной материальной точки
- •§ 5. Функция Лагранжа системы материальных точек
- •3. Плоский маятник, точка подвеса которого:
- •§ 6. Энергия
- •§ 7. Импульс
- •§ 9. Момент импульса
- •1. Найти выражения для декартовых компонент и абсолютной величины момента импульса частицы в цилиндрических координатах г, ф, г.
- •§ 13. Механическое подобие
- •1. Как относятся времена движения по одинаковым траекториям точек с различными массами при одинаковой потенциальной энергии?
- •2. Как изменяются времена движения по одинаковым траекториям при изменении потенциальной энергии на постоянный множитель?
- •Глава III
- •§11. Одномерное движение
- •§12. Определение потенциальной энергии по периоду колебаний
- •§ 13. Приведенная масса
- •§ 14. Движение в центральном поле
- •2. Проинтегрировать уравнения движения материальной точки, движущейся по поверхности конуса (с углом 2а при вершине), расположенного вертикально, вершиной вниз, в поле тяжести.
- •3 Проинтегрировать уравнения движения плоского маятника, точка подвеса которого (с массой mt в ней) способна совершать движение в горизонтальном направлении (см. Рис. 2).
- •§ 15. Кеплерова задача
- •. Бяаут2 бяу
- •Глава IV
- •§ 16. Распад частиц
- •§ 17. Упруги* столкновения частиц
- •4) Если функция р'(х) многозначна, то надо, очевидно, взять сумму таких выражений по всем ветвям этой функции,
- •2. Для того же случая выразить эффективное сечение как функцию энергии е, теряемой рассеиваемыми частицами.
- •3. Как зависит эффективное сечение от скорости w«. Частиц при рассеянии в поле u оо /—п?
- •Do°ovZmdo.
- •§ 19. Формула Резерфорда
- •§ 20. Рассеяние под малыми углами
- •1. Получить формулу (20,3) из формулы (18,4).
- •Глава V
- •§ 21. Свободные одномерные колебания
- •4) Подчеркнем, однако, что величина т совпадает с массой только, если х есть декартова координата частицы!
- •§ 22. Вынужденные колебания
- •3. То же в случае постоянной силы Ро, действующей в течение ограни-ченного времени т (рис. 25).
- •§ 23. Колебания систем со многими степенями свободы
- •&2 _ Z klkAlAk _
- •1. Определить колебания системы с двумя степенями свободы, если ее функция Лагранжа
- •2. Определить малые колебания двойного плоского маятника (рис, 1),
- •§ 24. Колебания молекул
- •2. То же для молекулы aba треугольной формы (рис. 29),
- •§ 26. Вынужденные колебания при наличии трения
- •§ 27. Параметрический резонанс
- •§ 28. Ангармонические колебания
- •§ 29. Резонанс в нелинейных колебаниях
- •§ 30. Движение в быстро осциллирующем поле
- •1. Определить положения устойчивого равновесия маятника, точка под- веса которого совершает вертикальные колебания с большой частотой
- •Глава VI
- •§ 31. Угловая скорость
- •§ 32. Тензор инерции
- •1. Определить главные моменты инерции для молекул, рассматриваемых «ак системы частиц, находящихся на неизменных расстояниях друг от друга, в следующих случаях:
- •2. Определить главные моменты инерции сплошных однородных тел.
- •3. Определить частоту малых колебаний физического маятника (твердое тело, качающееся в поле тяжести около неподвижной горизонтальной оси).
- •7. Найти кинетическую энергию однородного конуса, катящегося по пло- скости.
- •10. То же, если ось ав наклонена, а эллипсоид симметричен относительно этой оси (рис. 45).
- •§ 33. Момент импульса твердого тела
- •§ 34. Уравнения движения твердого тела
- •§ 35. Эйлеровы углы
- •1. Привести к квадратурам задачу о движении тяжелого симметрического волчка с неподвижной нижней точкой (рис.48).
- •2. Найти условие, при котором вращение волчка вокруг вертикальной оси будет устойчивым.
- •3. Определить движение волчка в случае, когда кинетическая энергия его собственного вращения велика по сравнению с энергией в поле тяжести (так называемый «быстрый» волчок).
- •§ 36. Уравнения Эйлера
- •§ 36] Уравнения эйлера 14g.
- •§ 37. Асимметрический волчок
- •1. Определить свободное вращение волчка вокруг оси, близкой к оси инерции хз (или XI).
- •§ 38. Соприкосновение твердых тел
- •1. Пользуясь принципом д'Аламбера, найти уравнения движения однородного шара, катящегося по плоскости под действием приложенных к нему внешней силы f и момента сил к.
- •2. Однородный стержень bd весом р и длиной / опирается на стену, как показано на рис. 52; его нижний конец в удерживается нитью ав, Определить реакцию опор и натяжение нити.
- •§ 39. Движение в неинерциальной системе отсчета
- •1. Найти отклонение свободно падающего тела от вертикали, обусловлен- ное вращением Земли. (Угловую скорость вращения считать малой.)
- •2. Определить отклонение от плоскости для тела, брошенного с поверх- ности Земли с начальной скоростью v0.
- •3. Определить влияние, оказываемое вращением Земли на малые колебания маятника (так называемый маятник Фуко).
- •Глава VII
- •§ 40. Уравнения Гамильтона
- •1. Найти функцию Гамильтона для одной материальной точки в декарто- вых, цилиндрических и сферических координатах.
- •2. Найти функцию Гамильтона частицы в равномерно вращающейся си- стеме отсчета.
- •3. Найти функцию Гамильтона системы из одной частицы с массой м и п частиц с массами т, с исключенным движением центра инерции (см. Задачу
- •§ 41. Функция Payca
- •§ 42. Скобки Пуассона
- •2. Определить скобки Пуассона, составленные из компонент м. Решение. Прямое вычисление по формуле (42,5) дает:
- •3. Показать, что
- •4. Показать, что
- •§ 43. Действие как функция координат
- •§ 44. Принцип Мопертюи
- •§ 45. Канонические преобразования
- •§ 46. Теорема Лиувилля
- •§ 47. Уравнение Гамильтона — Якоби
- •§ 48. Разделение переменных
- •1. Найти полный интеграл уравнения Гамильтона—Якоби для движения
- •§ 49. Адиабатические инварианты
- •§ 50. Канонические переменные
- •§ 51. Точность сохранения адиабатического инварианта
- •1. Оценить д/ для гармонического осциллятора с частотой, медленно меняющейся по закону
- •§ 52. Условно-периодическое движение
§ 4. Функция Лагранжа свободной материальной точки
')
Оно не справедливо в механике теории
относительности,
V = L (о'2) = L (v2 + 2ve + е2).
Разлагая это выражение в ряд по степеням е и пренебрегая бесконечно малыми высших порядков, получим:
L(vf2) = L(v2)-T--^r2V&.
Второй член правой части этого равенства будет полной производной по времени только в том случае, если он зависит от
скорости v линейно. Поэтому-J^- от скорости не зависит, т. е.
функция Лагранжа в рассматриваемом случае прямо пропорциональна квадрату скорости:
I—ft.2, (4,1)
где т — постоянная.
Из того, что функция Лагранжа такого вида удовлетворяет принципу относительности Галилея в случае бесконечно малого преобразования скорости, непосредственно следует, что она удовлетворяет этому принципу и в случае конечной скорости V системы отсчета К относительно К'. Действительно,
V = Jl v'2 = f (v + V)2 = v2 + 2 vV + -у- V2
или
Второй член является полной производной и может быть опущен.
Величина т называется массой материальной точки. В силу свойства аддитивности функции Лагранжа, для системы невзаимодействующих точек имеем')
а
') В качестве индекса, указывающего номер частицы, мы будем пользоваться первыми буквами латинского алфавита, а для индексов, нумерующих координаты, используем буквы I, k, I, ,,,
Следует подчеркнуть, что лишь при учете этого свойства данное определение массы приобретает реальный смысл. Как уже было отмечено в § 2, всегда можно умножить функцию Лагранжа на любую постоянную; это не отражается на уравнениях движения. Для функции (4,2) такое умножение сводится к изменению единицы измер-ения массы; отношения же масс различных частиц, которые только и имеют реальный физический смысл, остаются при этом преобразовании неизменными.
Легко видеть, что масса не может быть отрицательной. В самом деле, согласно принципу наименьшего действия для действительного движения материальной точки из точки 1 пространства в точку 2 интеграл
1
имеет минимум. Если бы масса была отрицательной, то для траекторий, по которым частица сначала быстро удаляется от а затем быстро приближается к 2, интеграл действия принимал бы сколь угодно большие по абсолютной величине отрицательные значения, т. е. не имел бы минимума'). Полезно заметить, что
Поэтому для составления функции Лагранжа достаточно найти квадрат длины элемента дуги dl в соответствующей системе координат.
В декартовых координатах, например, dP = dx2 -f- dy2 -f- dz2, поэтому
L=^-(x2 + y2 + z2). (4,4)
В цилиндрических dl2 = dr2 -f- r2 dy2 + dz2, откуда
i^Y^ + rV + i2). (4,5)
В сферических dl2 = dr2 -f- r2 dQ2 -f- r2 sin2 8 dy2 и
L = ^-(f2 + r2Q2 + r2 sin2 Эф2). (4,6)