
- •Глава I
- •§ 1. Обобщенные координаты
- •§ 2. Принцип наименьшего действия
- •§2] Принцип наименьшего действия и
- •§ 3. Принцип относительности Галилея
- •§ 4. Функция Лагранжа свободной материальной точки
- •§ 5. Функция Лагранжа системы материальных точек
- •3. Плоский маятник, точка подвеса которого:
- •§ 6. Энергия
- •§ 7. Импульс
- •§ 9. Момент импульса
- •1. Найти выражения для декартовых компонент и абсолютной величины момента импульса частицы в цилиндрических координатах г, ф, г.
- •§ 13. Механическое подобие
- •1. Как относятся времена движения по одинаковым траекториям точек с различными массами при одинаковой потенциальной энергии?
- •2. Как изменяются времена движения по одинаковым траекториям при изменении потенциальной энергии на постоянный множитель?
- •Глава III
- •§11. Одномерное движение
- •§12. Определение потенциальной энергии по периоду колебаний
- •§ 13. Приведенная масса
- •§ 14. Движение в центральном поле
- •2. Проинтегрировать уравнения движения материальной точки, движущейся по поверхности конуса (с углом 2а при вершине), расположенного вертикально, вершиной вниз, в поле тяжести.
- •3 Проинтегрировать уравнения движения плоского маятника, точка подвеса которого (с массой mt в ней) способна совершать движение в горизонтальном направлении (см. Рис. 2).
- •§ 15. Кеплерова задача
- •. Бяаут2 бяу
- •Глава IV
- •§ 16. Распад частиц
- •§ 17. Упруги* столкновения частиц
- •4) Если функция р'(х) многозначна, то надо, очевидно, взять сумму таких выражений по всем ветвям этой функции,
- •2. Для того же случая выразить эффективное сечение как функцию энергии е, теряемой рассеиваемыми частицами.
- •3. Как зависит эффективное сечение от скорости w«. Частиц при рассеянии в поле u оо /—п?
- •Do°ovZmdo.
- •§ 19. Формула Резерфорда
- •§ 20. Рассеяние под малыми углами
- •1. Получить формулу (20,3) из формулы (18,4).
- •Глава V
- •§ 21. Свободные одномерные колебания
- •4) Подчеркнем, однако, что величина т совпадает с массой только, если х есть декартова координата частицы!
- •§ 22. Вынужденные колебания
- •3. То же в случае постоянной силы Ро, действующей в течение ограни-ченного времени т (рис. 25).
- •§ 23. Колебания систем со многими степенями свободы
- •&2 _ Z klkAlAk _
- •1. Определить колебания системы с двумя степенями свободы, если ее функция Лагранжа
- •2. Определить малые колебания двойного плоского маятника (рис, 1),
- •§ 24. Колебания молекул
- •2. То же для молекулы aba треугольной формы (рис. 29),
- •§ 26. Вынужденные колебания при наличии трения
- •§ 27. Параметрический резонанс
- •§ 28. Ангармонические колебания
- •§ 29. Резонанс в нелинейных колебаниях
- •§ 30. Движение в быстро осциллирующем поле
- •1. Определить положения устойчивого равновесия маятника, точка под- веса которого совершает вертикальные колебания с большой частотой
- •Глава VI
- •§ 31. Угловая скорость
- •§ 32. Тензор инерции
- •1. Определить главные моменты инерции для молекул, рассматриваемых «ак системы частиц, находящихся на неизменных расстояниях друг от друга, в следующих случаях:
- •2. Определить главные моменты инерции сплошных однородных тел.
- •3. Определить частоту малых колебаний физического маятника (твердое тело, качающееся в поле тяжести около неподвижной горизонтальной оси).
- •7. Найти кинетическую энергию однородного конуса, катящегося по пло- скости.
- •10. То же, если ось ав наклонена, а эллипсоид симметричен относительно этой оси (рис. 45).
- •§ 33. Момент импульса твердого тела
- •§ 34. Уравнения движения твердого тела
- •§ 35. Эйлеровы углы
- •1. Привести к квадратурам задачу о движении тяжелого симметрического волчка с неподвижной нижней точкой (рис.48).
- •2. Найти условие, при котором вращение волчка вокруг вертикальной оси будет устойчивым.
- •3. Определить движение волчка в случае, когда кинетическая энергия его собственного вращения велика по сравнению с энергией в поле тяжести (так называемый «быстрый» волчок).
- •§ 36. Уравнения Эйлера
- •§ 36] Уравнения эйлера 14g.
- •§ 37. Асимметрический волчок
- •1. Определить свободное вращение волчка вокруг оси, близкой к оси инерции хз (или XI).
- •§ 38. Соприкосновение твердых тел
- •1. Пользуясь принципом д'Аламбера, найти уравнения движения однородного шара, катящегося по плоскости под действием приложенных к нему внешней силы f и момента сил к.
- •2. Однородный стержень bd весом р и длиной / опирается на стену, как показано на рис. 52; его нижний конец в удерживается нитью ав, Определить реакцию опор и натяжение нити.
- •§ 39. Движение в неинерциальной системе отсчета
- •1. Найти отклонение свободно падающего тела от вертикали, обусловлен- ное вращением Земли. (Угловую скорость вращения считать малой.)
- •2. Определить отклонение от плоскости для тела, брошенного с поверх- ности Земли с начальной скоростью v0.
- •3. Определить влияние, оказываемое вращением Земли на малые колебания маятника (так называемый маятник Фуко).
- •Глава VII
- •§ 40. Уравнения Гамильтона
- •1. Найти функцию Гамильтона для одной материальной точки в декарто- вых, цилиндрических и сферических координатах.
- •2. Найти функцию Гамильтона частицы в равномерно вращающейся си- стеме отсчета.
- •3. Найти функцию Гамильтона системы из одной частицы с массой м и п частиц с массами т, с исключенным движением центра инерции (см. Задачу
- •§ 41. Функция Payca
- •§ 42. Скобки Пуассона
- •2. Определить скобки Пуассона, составленные из компонент м. Решение. Прямое вычисление по формуле (42,5) дает:
- •3. Показать, что
- •4. Показать, что
- •§ 43. Действие как функция координат
- •§ 44. Принцип Мопертюи
- •§ 45. Канонические преобразования
- •§ 46. Теорема Лиувилля
- •§ 47. Уравнение Гамильтона — Якоби
- •§ 48. Разделение переменных
- •1. Найти полный интеграл уравнения Гамильтона—Якоби для движения
- •§ 49. Адиабатические инварианты
- •§ 50. Канонические переменные
- •§ 51. Точность сохранения адиабатического инварианта
- •1. Оценить д/ для гармонического осциллятора с частотой, медленно меняющейся по закону
- •§ 52. Условно-периодическое движение
§ 3. Принцип относительности Галилея
Для изучения механических явлений надо выбрать ту или иную систему отсчета. В различных системах отсчета законы движения имеют, вообще говоря, различный вид. Если взять произвольную систему отсчета, то может оказаться, что законы даже совсем простых явлений будут выглядеть в ней весьма сложно. Естественно, возникает задача отыскания такой системы отсчета, в которой законы механики выглядели бы наиболее просто.
По отношению к произвольной системе отсчета пространство является неоднородным и неизотропным. Это значит, что если какое-либо тело не взаимодействует ни с какими другими телами, то, тем не менее, его различные положения в пространстве и его различные ориентации в механическом отношении не эквивалентны, То же самое относится в общем случае и kq времени, которое будет неоднородным, т. е. его различные моменты неэквивалентными. Усложнение, которое вносили бы такие свойства пространства и времени в описание механических явлений, — очевидно. Так, например, свободное (т. е. не подвергающееся внешним воздействиям) тело не могло бы покоиться: если скорость тела в некоторый момент времени и равна нулю, то уже в следующий момент тело начало бы двигаться в некотором направлении.
Оказывается, однако, что всегда можно найти такую систему отсчета, по отношению к которой пространство является однородным и изотропным, а время — однородным. Такая система называется инерциальной. В ней, в частности, свободное тело, покоящееся в некоторый момент времени, остается в покое неограниченно долго.
Мы можем теперь сразу сделать некоторые заключения о виде функции Лагранжа свободно движущейся материальной точки в инерциальной системе отсчета. Однородность пространства и времени означает, что эта функция не может содержать явным образом ни радиус-вектора г точки, ни времени /, т. е. L является функцией лишь от скорости v. В силу же изотропии пространства функция Лагранжа не может зависеть также и от направления вектора v, так что является функцией лишь от его абсолютной величины, т. е. от квадрата v2 - v2:
L = L (о2).
(3,1)
Ввиду независимости функции Лагранжа от г имеем -^■=0, и потому уравнения Лагранжа имеют вид1)
d dL -dt dv ~ '
откуда — const. Но поскольку является функцией только от скорости, то отсюда следует, что и
v = const.
(3,2)
Таким образом, мы приходим к выводу, что в инерциальной системе отсчета всякое свободное движение происходит с постоянной по величине и направлению скоростью. Это утверждение составляет содержание так называемого закона инерции.
*)
Под производной скалярной величины
по вектору подразумевается вектор,
компоненты которого равны производным
от этой величины по соответствующим
компонентам вектора.
Опыт показывает, однако, что не только законы свободного движения будут одинаковыми в этих системах, но что они будут и во всех других механических отношениях полностью эквивалентными. Таким образом, существует не одна, а бесконечное множество инерциальных систем отсчета, движущихся друг относительно друга прямолинейно и равномерно. Во всех этих системах свойства пространства и времени одинаковы и одинаковы все законы механики. Это утверждение составляет содержание так называемого принципа относительности Галилея— одного из важнейших принципов механики.
Все сказанное достаточно ясно свидетельствует об исключительности свойств инерциальных систем отсчета, в силу которых именно эти системы должны, как правило, использоваться при изучении механических явлений. Везде в дальнейшем, где обратное не оговорено особо, мы будем рассматривать только инерциальные системы отсчета.
Полная механическая эквивалентность всего бесчисленного множества таких систем показывает в то же время, что не существует никакой одной «абсолютной» системы отсчета, которую можно было бы предпочесть другим системам.
Координаты гиг' одной и той же точки в двух различных системах отсчета К и К', из которых вторая движется относительно первой со скоростью V, связаны друг с другом соотношением
r = r' + W. (3,3)
При этом подразумевается, что ход времени одинаков в обеих системах отсчета:
t = f. (3,4)
Предположение об абсолютности времени лежит в самой основе представлений классической механики1).
Формулы (3,3), (3,4) называют преобразованием Галилея. Принцип относительности Галилея можно сформулировать как требование инвариантности уравнений движения механики по отношению к этому преобразованию.