
- •Глава I
- •§ 1. Обобщенные координаты
- •§ 2. Принцип наименьшего действия
- •§2] Принцип наименьшего действия и
- •§ 3. Принцип относительности Галилея
- •§ 4. Функция Лагранжа свободной материальной точки
- •§ 5. Функция Лагранжа системы материальных точек
- •3. Плоский маятник, точка подвеса которого:
- •§ 6. Энергия
- •§ 7. Импульс
- •§ 9. Момент импульса
- •1. Найти выражения для декартовых компонент и абсолютной величины момента импульса частицы в цилиндрических координатах г, ф, г.
- •§ 13. Механическое подобие
- •1. Как относятся времена движения по одинаковым траекториям точек с различными массами при одинаковой потенциальной энергии?
- •2. Как изменяются времена движения по одинаковым траекториям при изменении потенциальной энергии на постоянный множитель?
- •Глава III
- •§11. Одномерное движение
- •§12. Определение потенциальной энергии по периоду колебаний
- •§ 13. Приведенная масса
- •§ 14. Движение в центральном поле
- •2. Проинтегрировать уравнения движения материальной точки, движущейся по поверхности конуса (с углом 2а при вершине), расположенного вертикально, вершиной вниз, в поле тяжести.
- •3 Проинтегрировать уравнения движения плоского маятника, точка подвеса которого (с массой mt в ней) способна совершать движение в горизонтальном направлении (см. Рис. 2).
- •§ 15. Кеплерова задача
- •. Бяаут2 бяу
- •Глава IV
- •§ 16. Распад частиц
- •§ 17. Упруги* столкновения частиц
- •4) Если функция р'(х) многозначна, то надо, очевидно, взять сумму таких выражений по всем ветвям этой функции,
- •2. Для того же случая выразить эффективное сечение как функцию энергии е, теряемой рассеиваемыми частицами.
- •3. Как зависит эффективное сечение от скорости w«. Частиц при рассеянии в поле u оо /—п?
- •Do°ovZmdo.
- •§ 19. Формула Резерфорда
- •§ 20. Рассеяние под малыми углами
- •1. Получить формулу (20,3) из формулы (18,4).
- •Глава V
- •§ 21. Свободные одномерные колебания
- •4) Подчеркнем, однако, что величина т совпадает с массой только, если х есть декартова координата частицы!
- •§ 22. Вынужденные колебания
- •3. То же в случае постоянной силы Ро, действующей в течение ограни-ченного времени т (рис. 25).
- •§ 23. Колебания систем со многими степенями свободы
- •&2 _ Z klkAlAk _
- •1. Определить колебания системы с двумя степенями свободы, если ее функция Лагранжа
- •2. Определить малые колебания двойного плоского маятника (рис, 1),
- •§ 24. Колебания молекул
- •2. То же для молекулы aba треугольной формы (рис. 29),
- •§ 26. Вынужденные колебания при наличии трения
- •§ 27. Параметрический резонанс
- •§ 28. Ангармонические колебания
- •§ 29. Резонанс в нелинейных колебаниях
- •§ 30. Движение в быстро осциллирующем поле
- •1. Определить положения устойчивого равновесия маятника, точка под- веса которого совершает вертикальные колебания с большой частотой
- •Глава VI
- •§ 31. Угловая скорость
- •§ 32. Тензор инерции
- •1. Определить главные моменты инерции для молекул, рассматриваемых «ак системы частиц, находящихся на неизменных расстояниях друг от друга, в следующих случаях:
- •2. Определить главные моменты инерции сплошных однородных тел.
- •3. Определить частоту малых колебаний физического маятника (твердое тело, качающееся в поле тяжести около неподвижной горизонтальной оси).
- •7. Найти кинетическую энергию однородного конуса, катящегося по пло- скости.
- •10. То же, если ось ав наклонена, а эллипсоид симметричен относительно этой оси (рис. 45).
- •§ 33. Момент импульса твердого тела
- •§ 34. Уравнения движения твердого тела
- •§ 35. Эйлеровы углы
- •1. Привести к квадратурам задачу о движении тяжелого симметрического волчка с неподвижной нижней точкой (рис.48).
- •2. Найти условие, при котором вращение волчка вокруг вертикальной оси будет устойчивым.
- •3. Определить движение волчка в случае, когда кинетическая энергия его собственного вращения велика по сравнению с энергией в поле тяжести (так называемый «быстрый» волчок).
- •§ 36. Уравнения Эйлера
- •§ 36] Уравнения эйлера 14g.
- •§ 37. Асимметрический волчок
- •1. Определить свободное вращение волчка вокруг оси, близкой к оси инерции хз (или XI).
- •§ 38. Соприкосновение твердых тел
- •1. Пользуясь принципом д'Аламбера, найти уравнения движения однородного шара, катящегося по плоскости под действием приложенных к нему внешней силы f и момента сил к.
- •2. Однородный стержень bd весом р и длиной / опирается на стену, как показано на рис. 52; его нижний конец в удерживается нитью ав, Определить реакцию опор и натяжение нити.
- •§ 39. Движение в неинерциальной системе отсчета
- •1. Найти отклонение свободно падающего тела от вертикали, обусловлен- ное вращением Земли. (Угловую скорость вращения считать малой.)
- •2. Определить отклонение от плоскости для тела, брошенного с поверх- ности Земли с начальной скоростью v0.
- •3. Определить влияние, оказываемое вращением Земли на малые колебания маятника (так называемый маятник Фуко).
- •Глава VII
- •§ 40. Уравнения Гамильтона
- •1. Найти функцию Гамильтона для одной материальной точки в декарто- вых, цилиндрических и сферических координатах.
- •2. Найти функцию Гамильтона частицы в равномерно вращающейся си- стеме отсчета.
- •3. Найти функцию Гамильтона системы из одной частицы с массой м и п частиц с массами т, с исключенным движением центра инерции (см. Задачу
- •§ 41. Функция Payca
- •§ 42. Скобки Пуассона
- •2. Определить скобки Пуассона, составленные из компонент м. Решение. Прямое вычисление по формуле (42,5) дает:
- •3. Показать, что
- •4. Показать, что
- •§ 43. Действие как функция координат
- •§ 44. Принцип Мопертюи
- •§ 45. Канонические преобразования
- •§ 46. Теорема Лиувилля
- •§ 47. Уравнение Гамильтона — Якоби
- •§ 48. Разделение переменных
- •1. Найти полный интеграл уравнения Гамильтона—Якоби для движения
- •§ 49. Адиабатические инварианты
- •§ 50. Канонические переменные
- •§ 51. Точность сохранения адиабатического инварианта
- •1. Оценить д/ для гармонического осциллятора с частотой, медленно меняющейся по закону
- •§ 52. Условно-периодическое движение
§2] Принцип наименьшего действия и
Тот факт, что функция Лагранжа содержит только q и q, но не более высокие производные q, q,является выражением указанного выше утверждения, что механическое состояние полностью определяется заданием координат и скоростей.
Перейдем к выводу дифференциальных уравнений, решающих задачу об определении минимума интеграла (2,1). Для упрощения записи формул предположим сначала, что система обладает всего одной степенью свободы, так что должна быть определена всего одна функция q(t).
Пусть q = q(t) есть как раз та функция, для которой S имеет минимум. Это значит, что S возрастает при замене q{t) на любую функцию вида
q{t) + bq{t), (2,2)
где 6q(t) — функция, малая во всем интервале времени от ti до t2 (ее называют вариацией функции q{t)); поскольку при t = t\ и t = t2 все сравниваемые функции (2,2) должны принимать одни и те же значения qw и q(2), то должно быть:
= = (2,3)
Изменение 5 при замене q на q + 8q дается разностью *i t2
\ L(q + bq, q + dq, t)dt-^L(q, q, t)dt. и и
Разложение этой разности по степеням б<7 и 8q (в подынтегральном выражении) начинается с членов первого порядка. Необходимым условием минимальности S') является обращение в нуль совокупности этих членов; ее называют первой вариацией (или обычно просто вариацией) интеграла. Таким образом, принцип наименьшего действия можно записать в виде
и
6<S = 6$L(<7, q, t)dt = 0, (2,4)
или, произведя варьирование:
и
Замечая, что bq = -^-bq, проинтегрируем второй член по частям и получим:
_ л ti
i) Вообще — экстремальности.
Но в силу условий (2,3) первый член в этом выражении исчезает. Остается интеграл, который должен быть равен нулю при произвольных значениях 6q. Это возможно только в том случае, если подынтегральное выражение тождественно обращается в нуль. Таким образом, мы получаем уравнение
d dL dL
dt dq dq ~~U*
При наличии нескольких степеней свободы в принципе наименьшего действия должны независимо варьироваться s различных функций qt{t). Очевидно, что мы получим тогда s уравнений вида
Ж-о%--^7 = ° </=1.2,...,s). (2,6)
Это — искомые дифференциальные уравнения; они называются в механике уравнениями Лагранжа1). Если функция Лагранжа данной механической системы известна, то уравнения (2,6) устанавливают связь между ускорениями, скоростями и координатами, т, е. представляют собой уравнения движения системы.
С математической точки зрения уравнения (2,6) составляют систему s уравнений второго порядка для s неизвестных функций qi(t). Общее решение такой системы содержит 2s произвольных постоянных. Для их определения и тем самым полного определения движения механической системы необходимо знание начальных условий, характеризующих состояние системы в некоторый заданный момент времени, например знание начальных значений всех координат и скоростей.
Пусть механическая система состоит из двух частей Л и В, каждая из которых, будучи замкнутой, имела бы в качестве функции Лагранжа соответственно функции La и Lb. Тогда в пределе, при разведении частей настолько далеко, чтобы взаимодействием между ними можно было пренебречь, лагранжева функция всей системы стремится к пределу
Urn L = LA + LB. (2,7)
Это свойство аддитивности функции Лагранжа выражает собой тот факт, что уравнения движения каждой из невзаимодействующих частей не могут содержать величины, относящиеся к другим частям системы.
Очевидно, что умножение функции Лагранжа механической системы на произвольную постоянную само по себе не отражается на уравнениях движения. Отсюда, казалось бы, могла
') В вариационном исчислении, рассматривающем формальную задачу об определении экстремумов интегралов вида (2,1), они называются уравнениями Эйлера,
принцип относительности галилея
13
вытекать существенная неопределенность: функции Лагранжа различных изолированных механических систем могли бы умножаться на любые различные постоянные. Свойство аддитивности устраняет эту неопределенность, — оно допускает лишь одновременное умножение лагранжевых функций всех систем на одинаковую постоянную, что сводится просто к естественному произволу в выборе единиц измерения этой физической вели* чины; мы вернемся еще к этому вопросу в § 4.
Необходимо сделать еще следующее общее замечание. Рассмотрим две функции L'(q,q,t) и L(q,q,t), отличающиеся друг от друга на полную производную по времени от какой-либо функции координат и времени f(q, t):
Lf(q,q,t) = L(q,q,t)+-^f(q,t). (2,8)
Вычисленные с помощью этих двух функций интегралы (2,1) связаны соотношением
и и и
S'-Jl'fo, Я, t)dt=\L(q, q, t)dt + \-§dt = и и и
= S + /(<7(2>, У~/(<7(1), h),
т. е. отличаются друг от друга дополнительным членом, исчезающим при варьировании действия, так что условие 65' = О совпадает с условием 65 = 0, и вид уравнений движения остается неизменным.
Таким образом, функция Лагранжа определена лишь с точностью до прибавления к ней полной производной от любой функции координат и времени.