- •§ 1. Уравнение непрерывности
 - •§ Pvrff,
 - •§ 2. Уравнение Эйлера
 - •§ 3. Гидростатика
 - •§ 4. Условие отсутствия конвекции
 - •§ 5. Уравнение Бернулли
 - •§ 6. Поток энергии
 - •§ 7. Поток импульса
 - •§ 8. Сохранение циркуляции скорости
 - •§ 9. Потенциальное движение
 - •§ 10. Несжимаемая жидкость
 - •§ 12. Гравитационные волны
 - •§ 13. Внутренние волны в несжимаемой жидкости
 - •§ 14. Волны во вращающейся жидкости
 - •Глава II
 - •§ 15. Уравнения движения вязкой жидкости
 - •§ 16. Диссипация энергии в несжимаемой жидкости
 - •§17. Течение по трубе
 - •§ 18. Движение жидкости между вращающимися цилиндрами
 - •§ 19. Закон подобия
 - •§ 20. Течение при малых числах Рейнольдса
 - •§ 21. Ламинарный след
 - •§ 22. Вязкость суспензий
 - •§ 23. Точные решения уравнений движения вязкой жидкости
 - •§ 24. Колебательное движение в вязкой жидкости
 - •§ 25. Затухание гравитационных волн
 - •Глава III
 - •§ 26. Устойчивость стационарного движения жидкости
 - •§ 27. Устойчивость вращательного движения жидкости
 - •§ 29. Неустойчивость тангенциальных разрывов
 - •§ 30. Квазипериодическое движение и синхронизация частот3)
 - •§ 31. Странный аттрактор
 - •§ 32. Переход к турбулентности путем удвоения периодов
 - •§ 33. Развитая турбулентность
 - •§ 34. Корреляционные функции скоростей
 - •§ 35. Турбулентная область и явление отрыва
 - •§ 36. Турбулентная струя
 - •§ 37. Турбулентный след
 - •§ 38. Теорема Жуковского
 - •Глава IV
 - •§ 39. Ламинарный пограничный слой
 - •1. Определить толщину пограничного слоя вблизи критической точки (см. § 10) на обтекаемом жидкостью теле.
 - •2. Определить движение в пограничном слое при конфузорном (см. § 23) течении между двумя пересекающимися плоскостями (к.. Pohlhausen, 1921).
 - •§ 41. Устойчивость движения в ламинарном пограничном слое
 - •2) Эта аналогия указана а в. Тимофеевым (1979) и а а Андроновым и а л. Фабрикантом (1979); ниже мы следуем изложению а. В. Тимофеева.
 - •8) При V"(y) шг 0 уравнение (41,2) вообще не имеет решений, удовлетворяющих необходимым граничным условиям.
 - •§ 42. Логарифмический профиль скоростей
 - •§ 43. Турбулентное течение в трубах
 - •§ 44. Турбулентный пограничный слой
 - •§ 45. Кризис сопротивления
 - •§ 46. Хорошо обтекаемые тела
 - •§ 47. Индуктивное сопротивление
 - •§ 48. Подъёмная сила тонкого крыла
 - •S2(£)-Citt) 6-«
 - •Глава V
 - •§ 49. Общее уравнение переноса тепла
 - •§ 50. Теплопроводность в несжимаемой жидкости
 - •§ 51. Теплопроводность в неограниченной среде
 - •§ 52. Теплопроводность в ограниченной среде
 - •§ 53. Закон подобия для теплопередачи
 - •§ 54. Теплопередача в пограничном слое
 - •ВгТт « - у«р-
 - •§ 55. Нагревание тела в движущейся жидкости
 - •§ 56. Свободная конвекция
 - •§ 57. Конвективная неустойчивость неподвижной жидкости
 - •§ 58. Уравнения гидродинамики для жидкой смеси
 - •§ 59. Коэффициенты диффузии и термодиффузии
 - •§ 60. Диффузия взвешенных в жидкости частиц
 - •Глава VII
 - •§ 61. Формула Лапласа
 - •§ 62. Капиллярные волны
 - •§ 63. Влияние адсорбированных пленок на движение жидкости
 - •Глава VIII
 - •§ 64. Звуковые волны
 - •§ 66. Энергия и импульс звуковых волн
 - •§ 66. Отражение и преломление звуковых волн
 - •§ 67. Геометрическая акустика
 - •§ 68. Распространение звука в движущейся среде
 - •§ 69. Собственные колебания
 - •§ 70. Сферические волны
 - •§71. Цилиндрические волны
 - •§ 72. Общее решение волнового уравнения
 - •Ctjc42-(X-q2- (*/-г,)2'
 - •§ 73. Боковая волна
 - •§ 74. Излучение звука
 - •§ 75. Возбуждение звука турбулентностью
 - •V 1г' 4я j дхидх1к
 - •§ 76. Принцип взаимности
 - •§ 77. Распространение звука по трубке
 - •§ 78. Рассеяние звука
 - •§ 79. Поглощение звука
 - •4. Определить дополнительное поглощение звука, распространяющегося в смеси двух веществ, связанное с диффузией (и. Г. Шапошников и 3. А Гольдберг, 1952).
 - •§ 80. Акустическое течение
 - •§ 81. Вторая вязкость
 - •Глава IX
 - •§ 82. Распространение возмущений в потоке сжимаемого газа
 - •2) Во избежание недоразумений оговорим, что если перед обтекаемым телом возникает ударная волна, то эта область несколько увеличивается (см. § 122).
 - •§ 83. Стационарный поток сжимаемого газа
 - •§ 84. Поверхности разрыва
 - •§ 85. Ударная адиабата
 - •2) Такой выбор системы координат будет подразумеваться везде в этой главе, за исключением § 92.
 - •§ 86. Ударные волны слабой интенсивности
 - •§ 87] Направление изменения величин в ударной волне 463
 - •§ 87. Направление изменения величин в ударной волне
 - •§ 88. Эволюционность ударных волн
 - •§ 89. Ударные волны в политропном газе
 - •1. Получить формулу
 - •§ 90. Гофрировочная неустойчивость ударных волн
 - •2) Сравните с аналогичной ситуацией для тангенциальных разрывов — задача 2 § 84.
 - •1) Эта неустойчивость тоже была указана с. П. Дьяковым (1954); правильное значение нижней границы в (90,17) найдено в. М. Конторовичем (1957).
 - •§ 91. Распространение ударной волны по трубе
 - •§ 92. Косая ударная волна
 - •§ 93. Ширина ударных волн
 - •§ 94. Ударные волны в релаксирующей среде
 - •§ 96. Слабые разрывы
 - •Глава X
 - •§ 97. Истечение газа через сопло
 - •§ 98. Вязкое движение сжимаемого газа по трубе
 - •§ 99. Одномерное автомодельное движение
 - •5. Определить движение в изотермической автомодельной волне разрежения.
 - •§ 100. Разрывы в начальных условиях
 - •§ 101. Одномерные бегущие волны
 - •§ 102. Образование разрывов в звуковой волне
 - •§ 103. Характеристики
 - •§ 104. Инварианты Римана
 - •§ 105. Произвольное одномерное движение сжимаемого газа
 - •§ 106. Задача о сильном взрыве
 - •§ 107. Сходящаяся сферическая ударная волна
 - •2) Эта задача была рассмотрена независимо Гудерлеем (о. Guderleu, 1942) и л. Д. Ландау и к. П. Станюковичем (1944, опубликовано в 1955).
 - •§ 108. Теория «мелкой воды»
 - •Глава XI
 - •§ 109. Волна разрежения
 - •§ 111. Пересечение ударных волн с твердой поверхностью
 - •§ 112. Сверхзвуковое обтекание угла
 - •§ 113. Обтекание конического острия
 - •Глава XII
 - •§ 114. Потенциальное движение сжимаемого газа
 - •§ 115. Стационарные простые волны
 - •§ 116. Уравнение Чаплыгина (общая задача
 - •§ 117. Характеристики плоского стационарного течения
 - •§ 118. Уравнение Эйлера — Трикоми. Переход через звуковую скорость
 - •§1191 Решение уравнения эйлера —трикоми 619
 - •§ 119. Решения уравнения Эйлера — Трикоми вблизи неособых точек звуковой поверхности
 - •§ 120. Обтекание со звуковой скоростью
 - •§ 121. Отражение слабого разрыва от звуковой линии
 - •Глава XIII
 - •§ 122. Образование ударных воли при сверхзвуковом обтекании тел
 - •§ 123. Сверхзвуковое обтекание заостренного тела
 - •§ 124. Дозвуковое обтекание тонкого крыла
 - •§ 125. Сверхзвуковое обтекание крыла
 - •§ 126. Околозвуковой закон подобия
 - •§ 127. Гиперзвуковой закон подобия
 - •Глава XIV
 - •§ 128. Медленное горение
 - •§ 129. Детонация
 - •§ 130. Распространение детонационной волны
 - •§ 131. Соотношение между различными режимами горения
 - •§ 132. Конденсационные скачки
 - •Глава XV
 - •§ 133. Тензор энергии-импульса жидкости
 - •§ 134. Релятивистские гидродинамические уравнения
 - •§ 135. Ударные волны в релятивистской гидродинамике
 - •§ 136. Релятивистские уравнения движения вязкой и теплопроводной среды
 - •§ 137. Основные свойства сверхтекучей жидкости
 - •§ 138. Термомеханический эффект
 - •§ 139. Уравнения гидродинамики сверхтекучей жидкости
 - •§ 140. Диссипативные процессы в сверхтекучей жидкости
 - •§ 141. Распространение звука в сверхтекучей жидкости
 
§ 89. Ударные волны в политропном газе
Применим полученные в предыдущих параграфах общие соотношения к ударным волнам в политропном газе.
	 
		
Ll-vt —
^_ (у+ 1) pi + (у — 1>ра (Y-l)Pi + (Y+»)/»» " (89,1)
	 
		О 
		-1/6 
		2 
		Рис.
		58
	 
		Y+
		1
Pi
Y+ 1
') Во всех перечисленных на рис. 57 неэволюционных случаях возмущение недоопределено — число произвольных параметров превышает число уравнений Упомянем, что в магнитной гидродинамике ударные волны могут быть неэволюционными в силу кзк недоопределенности, так и переопределенности возмущений (см. VIII, § 73).
Реальным смыслом обладает, как мы знаем, только верхняя часть кривой над точкой V2/Vi = Р2/Р1 = 1, изображенная на рис. 58 (для у = 1,4) сплошной линией.
Для отношения температур с обеих сторон разрыва имеем согласно уравнению состояния термодинамически идеального газа Т2/Тх = p2V2/piVi, так что
ll — H. Г<У + !>Р' + (V —0Р2 1 /oq ™
Ti р, L(Y-1)P. + (Y+1)P2J- ( '>
Для потока / получаем из (85,6) и (89,1):
;2 _ (Y — 0 Pi + (у+ О Р2 (яа о\
/ 21Л (оУ.-э)
и отсюда для скорости распространения ударной волны относительно газов впереди и позади нее:
.2
°i = Т" [(V - 1) Pi + (Y + 1) Р2] -= |г [(V ~ D + (Y + 1) .
(89 4)
	„    У,
	[(У+1)Р!
	+
	(У-1)Р2]2
	    с2
	Г,
	     п.
	/
	  ,пр<1
	pl°-2-[(Y-l)p,
	+
	(Y+l)p2l
	=2^L<V-D
	+
	(Y+1)-^J.
и для разности скоростей:
		V2TT(p2-p,)	5)
[(Y-l)Pi + (Y+Dp2],/2 V
В применениях полезны формулы, выражающие отношения плотностей, давлений и температур в ударной волне через число Mi = Vi/cu эти формулы без труда выводятся из полученных выше соотношений и гласят:
Р2 " (Y + 1)M' (89,6)
р, о2 (v_l)Mf + 2
Pl ^. - V*,- (ад
£2_ Pl
Г2 [2YM2-(v-l)][(Y-l)M2 + 2]
Г, (y + 02М2 ' 1 ' '
Число же М2 = у2/с2 выражается через число Mi посредством
2 2 + (у-1)М2
М? = —-5^ —. (89,9)
2YM2-(y- 1) v
Это соотношение симметрично относительно Mi и М2, как это •становится очевидным, если записать его в виде уравнения
2yMiMl - (y — 1) (М? + Ml) = 2.
Выпишем предельные формулы для ударных волн очень большой интенсивности (требуется, чтобы бьмо (7 — 1)р2"> >(V— 1 )pi). Имеем из (89,1—2):
ТТ—pT-J+T' -77-7+Г7Г- (89'10>
Отношение T2/Ti неограниченно растет вместе с р2/р\, т. е. ска- чок температуры, как и скачок'давления, в ударной волне мо- жет быть сколь угодно большим. Отношение же плотностей стремится к постоянному пределу; так, для одноатомного газа предельное значение р2 = 4рь для двухатомного р2 = брь Ско- рости распространения ударной волны большой интенсивности равны
	0^
	=
	V'1Tlp2Fl•
	  ^VacT+i')^1-
	    (89,И>
Они растут пропорционально корню из давления р2.
	 
		M,-l
		=
		l-M2
		=
		^-Z>
		  ±i-=l+J^J_z,
v±lz> £i.= 1+rzl 4v ci 2у
Pi Y 2Y2 \ • /
Здесь сохранены члены, дающие первую поправку к значениям, отвечающим звуковому приближению.
Задачи
