
- •§ 1. Уравнение непрерывности
- •§ Pvrff,
- •§ 2. Уравнение Эйлера
- •§ 3. Гидростатика
- •§ 4. Условие отсутствия конвекции
- •§ 5. Уравнение Бернулли
- •§ 6. Поток энергии
- •§ 7. Поток импульса
- •§ 8. Сохранение циркуляции скорости
- •§ 9. Потенциальное движение
- •§ 10. Несжимаемая жидкость
- •§ 12. Гравитационные волны
- •§ 13. Внутренние волны в несжимаемой жидкости
- •§ 14. Волны во вращающейся жидкости
- •Глава II
- •§ 15. Уравнения движения вязкой жидкости
- •§ 16. Диссипация энергии в несжимаемой жидкости
- •§17. Течение по трубе
- •§ 18. Движение жидкости между вращающимися цилиндрами
- •§ 19. Закон подобия
- •§ 20. Течение при малых числах Рейнольдса
- •§ 21. Ламинарный след
- •§ 22. Вязкость суспензий
- •§ 23. Точные решения уравнений движения вязкой жидкости
- •§ 24. Колебательное движение в вязкой жидкости
- •§ 25. Затухание гравитационных волн
- •Глава III
- •§ 26. Устойчивость стационарного движения жидкости
- •§ 27. Устойчивость вращательного движения жидкости
- •§ 29. Неустойчивость тангенциальных разрывов
- •§ 30. Квазипериодическое движение и синхронизация частот3)
- •§ 31. Странный аттрактор
- •§ 32. Переход к турбулентности путем удвоения периодов
- •§ 33. Развитая турбулентность
- •§ 34. Корреляционные функции скоростей
- •§ 35. Турбулентная область и явление отрыва
- •§ 36. Турбулентная струя
- •§ 37. Турбулентный след
- •§ 38. Теорема Жуковского
- •Глава IV
- •§ 39. Ламинарный пограничный слой
- •1. Определить толщину пограничного слоя вблизи критической точки (см. § 10) на обтекаемом жидкостью теле.
- •2. Определить движение в пограничном слое при конфузорном (см. § 23) течении между двумя пересекающимися плоскостями (к.. Pohlhausen, 1921).
- •§ 41. Устойчивость движения в ламинарном пограничном слое
- •2) Эта аналогия указана а в. Тимофеевым (1979) и а а Андроновым и а л. Фабрикантом (1979); ниже мы следуем изложению а. В. Тимофеева.
- •8) При V"(y) шг 0 уравнение (41,2) вообще не имеет решений, удовлетворяющих необходимым граничным условиям.
- •§ 42. Логарифмический профиль скоростей
- •§ 43. Турбулентное течение в трубах
- •§ 44. Турбулентный пограничный слой
- •§ 45. Кризис сопротивления
- •§ 46. Хорошо обтекаемые тела
- •§ 47. Индуктивное сопротивление
- •§ 48. Подъёмная сила тонкого крыла
- •S2(£)-Citt) 6-«
- •Глава V
- •§ 49. Общее уравнение переноса тепла
- •§ 50. Теплопроводность в несжимаемой жидкости
- •§ 51. Теплопроводность в неограниченной среде
- •§ 52. Теплопроводность в ограниченной среде
- •§ 53. Закон подобия для теплопередачи
- •§ 54. Теплопередача в пограничном слое
- •ВгТт « - у«р-
- •§ 55. Нагревание тела в движущейся жидкости
- •§ 56. Свободная конвекция
- •§ 57. Конвективная неустойчивость неподвижной жидкости
- •§ 58. Уравнения гидродинамики для жидкой смеси
- •§ 59. Коэффициенты диффузии и термодиффузии
- •§ 60. Диффузия взвешенных в жидкости частиц
- •Глава VII
- •§ 61. Формула Лапласа
- •§ 62. Капиллярные волны
- •§ 63. Влияние адсорбированных пленок на движение жидкости
- •Глава VIII
- •§ 64. Звуковые волны
- •§ 66. Энергия и импульс звуковых волн
- •§ 66. Отражение и преломление звуковых волн
- •§ 67. Геометрическая акустика
- •§ 68. Распространение звука в движущейся среде
- •§ 69. Собственные колебания
- •§ 70. Сферические волны
- •§71. Цилиндрические волны
- •§ 72. Общее решение волнового уравнения
- •Ctjc42-(X-q2- (*/-г,)2'
- •§ 73. Боковая волна
- •§ 74. Излучение звука
- •§ 75. Возбуждение звука турбулентностью
- •V 1г' 4я j дхидх1к
- •§ 76. Принцип взаимности
- •§ 77. Распространение звука по трубке
- •§ 78. Рассеяние звука
- •§ 79. Поглощение звука
- •4. Определить дополнительное поглощение звука, распространяющегося в смеси двух веществ, связанное с диффузией (и. Г. Шапошников и 3. А Гольдберг, 1952).
- •§ 80. Акустическое течение
- •§ 81. Вторая вязкость
- •Глава IX
- •§ 82. Распространение возмущений в потоке сжимаемого газа
- •2) Во избежание недоразумений оговорим, что если перед обтекаемым телом возникает ударная волна, то эта область несколько увеличивается (см. § 122).
- •§ 83. Стационарный поток сжимаемого газа
- •§ 84. Поверхности разрыва
- •§ 85. Ударная адиабата
- •2) Такой выбор системы координат будет подразумеваться везде в этой главе, за исключением § 92.
- •§ 86. Ударные волны слабой интенсивности
- •§ 87] Направление изменения величин в ударной волне 463
- •§ 87. Направление изменения величин в ударной волне
- •§ 88. Эволюционность ударных волн
- •§ 89. Ударные волны в политропном газе
- •1. Получить формулу
- •§ 90. Гофрировочная неустойчивость ударных волн
- •2) Сравните с аналогичной ситуацией для тангенциальных разрывов — задача 2 § 84.
- •1) Эта неустойчивость тоже была указана с. П. Дьяковым (1954); правильное значение нижней границы в (90,17) найдено в. М. Конторовичем (1957).
- •§ 91. Распространение ударной волны по трубе
- •§ 92. Косая ударная волна
- •§ 93. Ширина ударных волн
- •§ 94. Ударные волны в релаксирующей среде
- •§ 96. Слабые разрывы
- •Глава X
- •§ 97. Истечение газа через сопло
- •§ 98. Вязкое движение сжимаемого газа по трубе
- •§ 99. Одномерное автомодельное движение
- •5. Определить движение в изотермической автомодельной волне разрежения.
- •§ 100. Разрывы в начальных условиях
- •§ 101. Одномерные бегущие волны
- •§ 102. Образование разрывов в звуковой волне
- •§ 103. Характеристики
- •§ 104. Инварианты Римана
- •§ 105. Произвольное одномерное движение сжимаемого газа
- •§ 106. Задача о сильном взрыве
- •§ 107. Сходящаяся сферическая ударная волна
- •2) Эта задача была рассмотрена независимо Гудерлеем (о. Guderleu, 1942) и л. Д. Ландау и к. П. Станюковичем (1944, опубликовано в 1955).
- •§ 108. Теория «мелкой воды»
- •Глава XI
- •§ 109. Волна разрежения
- •§ 111. Пересечение ударных волн с твердой поверхностью
- •§ 112. Сверхзвуковое обтекание угла
- •§ 113. Обтекание конического острия
- •Глава XII
- •§ 114. Потенциальное движение сжимаемого газа
- •§ 115. Стационарные простые волны
- •§ 116. Уравнение Чаплыгина (общая задача
- •§ 117. Характеристики плоского стационарного течения
- •§ 118. Уравнение Эйлера — Трикоми. Переход через звуковую скорость
- •§1191 Решение уравнения эйлера —трикоми 619
- •§ 119. Решения уравнения Эйлера — Трикоми вблизи неособых точек звуковой поверхности
- •§ 120. Обтекание со звуковой скоростью
- •§ 121. Отражение слабого разрыва от звуковой линии
- •Глава XIII
- •§ 122. Образование ударных воли при сверхзвуковом обтекании тел
- •§ 123. Сверхзвуковое обтекание заостренного тела
- •§ 124. Дозвуковое обтекание тонкого крыла
- •§ 125. Сверхзвуковое обтекание крыла
- •§ 126. Околозвуковой закон подобия
- •§ 127. Гиперзвуковой закон подобия
- •Глава XIV
- •§ 128. Медленное горение
- •§ 129. Детонация
- •§ 130. Распространение детонационной волны
- •§ 131. Соотношение между различными режимами горения
- •§ 132. Конденсационные скачки
- •Глава XV
- •§ 133. Тензор энергии-импульса жидкости
- •§ 134. Релятивистские гидродинамические уравнения
- •§ 135. Ударные волны в релятивистской гидродинамике
- •§ 136. Релятивистские уравнения движения вязкой и теплопроводной среды
- •§ 137. Основные свойства сверхтекучей жидкости
- •§ 138. Термомеханический эффект
- •§ 139. Уравнения гидродинамики сверхтекучей жидкости
- •§ 140. Диссипативные процессы в сверхтекучей жидкости
- •§ 141. Распространение звука в сверхтекучей жидкости
§ 85. Ударная адиабата
Перейдем к подробному изучению ударных волн1). Мы видели, что в этих разрывах тангенциальная компонента скорости газа непрерывна. Можно поэтому выбрать систему координат, в которой рассматриваемый элемент поверхности разрыва покоится, а тангенциальная компонента скорости газа по обе стороны поверхности равна нулю2). Тогда можно писать вместо нормальной компоненты vx просто v и условия (84,7) напишутся в виде
Р101 = Р2»2 = /. (85,1)
P1 + P1f2 = P2 + p2y2> (85,2)
2 2
ш! + -^- = ш2 + -у-, (85,3)
где / обозначает плотность потока газа через поверхность разрыва. Мы условимся в дальнейшем всегда считать j положительным, причем газ переходит со стороны / на сторону 2. Другими словами, мы будем называть газом / тот, в сторону которого движется ударная волна, а газом 2 — газ, остающийся за ней. Сторону ударной волны, обращенную к газу /, будем называть передней, а обращенную к газу 2 — задней.
Выведем ряд соотношений, являющихся следствием написанных условий. Введем удельные объемы V\ = 1/pi, V2—1/рг газа. Из (85,1) имеем:
у1 = /у„ v2 = jV2 (85,4)
и, подставляя в (85,2):
P. + /V, = p2 + i2V2, (85,5)
или
f = "^7- (85,6)
')
Сделаем одно терминологическое
замечание. Под ударной волной мы
понимаем самую поверхность разрыва.
В литературе, однако, можно встретить
и другую терминологию, в которой
поверхность разрыва называют фронтом
ударной волны, а под ударной волной
понимают поверхность разрыва вместе
со следующим за ним течением газа.
Неподвижную
ударную волну часто называют скачком
уплотнения.
Если
неподвижная ударная волна перпендикулярна
к направлению потока, то юворят о прямом
скачке уплотнения; если же она наклонна
к
направлению
движения, то говорят о косом скачке
уплотнения.2) Такой выбор системы координат будет подразумеваться везде в этой главе, за исключением § 92.
Поскольку /2 — величина положительная, то должно быть одновременно р2 > рь Vi > V2 или р2 < ри Vi < V2; мы увидим в дальнейшем, что в действительности возможен лишь первый случай.
Отметим еще следующую полезную формулу для разности скоростей v\ — v2. Подставляя (85,6) в v\— v2 = j(V\—V2), по- лучаем1):
Oi-o2 = V(P2-P1)(^-^2). (85,7)
Далее, пишем (85,3) в виде
w1+-TL = w2 + -^- (85,8)
и, подставляя /2 из (85,6), получаем:
t»i - Щ + j (Vi + V2) (р2 - Pl) = 0. (85,9)
Если ввести вместо тепловой функции внутреннюю энергию е согласно е = w — pV, то полученное соотношение можно написать в виде
ei - е2 + (Vi - V2) (Pl + р2) = 0. (85,10)
Эти соотношения определяют связь между термодинамическими величинами по обе стороны поверхности разрыва.
')
Мы пишем здесь квадратный корень с
положительным
знаком, заранее имея в виду, что должно
быть Vi
—
v2
>
0, как
это будет выяснено ниже (§
87).
Пусть аа' (рис. 54) есть ударная адиабата, проведенная через точку рь V] в качестве начальной. Выберем на ней какую-нибудь точку р2, V2 и проведем через нее другую адиабату (bb')t для которой бы эта точка была начальной. Очевидно, что пара значений рь V\ будет удовлетворять также и уравнению этой второй адиабаты. Таким образом, адиабаты аа' и bb' пересекутся в обеих точках pi, V\ и рг, V2. Подчеркнем, что обе эти адиабаты отнюдь не совпадают полностью друг с другом, как это имело бы место для адиабат Пуассона, проведенных через заданную точку.
Рис. 53 Рис. 54
Это обстоятельство является одним из следствий того факта, что уравнение ударной адиабаты не может быть написано в виде Др, V) = const, где / есть некоторая функция своих аргументов, как это, например, имеет место для адиабаты Пуассона (уравнение которой есть s(p, V) = const). В то время как адиабаты Пуассона (для заданного газа) составляют однопараметрическое семейство кривых, ударная адиабата определяется заданием двух параметров: начальных значений р\, V\. С этим же связано и следующее важное обстоятельство: если две (или более) последовательные ударные волны переводят газ соответственно из состояния / в состояние 2 и из 2 в 3, то переход из состояния / в 3 путем прохождения какой-либо одной ударной волны, вообще говоря, невозможен.
При заданном начальном термодинамическом состоянии газа (т. е. заданных р\, V\) ударная волна определяется всего одним каким-либо параметром: если, например, задать давление р2 за волной, то по адиабате Гюгонио определится V2, а затем по формулам (85,4) и (85,6) — плотность потока / и скорости vi и Vi. Напомним, однако, что мы рассматриваем здесь ударную волну в системе координат, в которой газ движется нормально к ее поверхности. Если же учесть возможность расположения ударной волны под косым углом к направлению потока, то понадобится еще один параметр, например, значение касательной к ее поверхности составляющей скорости.
Укажем здесь на следующее удобное графическое истолкование формулы (85,6). Если соединить хордой точку ри Vi на ударной адиабате (рис. 53) с некоторой произвольной точкой р2, V2 на ней, то (р2 — Pi) / (V2— Vi)= —j2 есть не что иное, как тангенс угла наклона этой хорды к оси абсцисс (к ее положительному направлению). Таким образом, значение /, а с ним и скорости ударной волны, определяется в каждой точке ударной адиабаты углом наклона хорды, проведенной в эту точку из начальной точки.
Наряду с другими термодинамическими величинами в ударной волне испытывает разрыв также и энтропия. В силу закона возрастания энтропии последняя для газа может лишь возрастать при его движении. Поэтому энтропия s2 газа, прошедшего через ударную волну, должна быть больше его начальной энтропии Sb
s2>si. (85,11)
Мы увидим ниже, что это условие налагает существенные ограничения на характер изменения всех величин в ударной волне.
Подчеркнем здесь следующее обстоятельство. Наличие ударных волн приводит к возрастанию энтропии при таких движениях, которые можно рассматривать во всем пространстве как движение идеальной жидкости, не обладающей вязкостью и теплопроводностью. Возрастание энтропии означает необратимость движения, т. е. наличие диссипации энергии. Таким образом, разрывы представляют собой механизм, который приводит к диссипации энергии при движении идеальной жидкости. В связи с этим для движения тел в идеальной жидкости, сопровождающегося возникновением ударных волн, не имеет места парадокс Даламбера (§ 11) — при таком движении тело испытывает силу сопротивления.
Разумеется, истинный механизм возрастания энтропии в ударных волнах заключен в диссипативных процессах, происходящих в тех весьма тонких слоях вещества, которые в действительности представляют собой физические ударные волны (см. § 93). Замечательно, однако, что величина этой диссипации целиком определяется одними лишь законами сохранения массы, энергии и импульса, примененными к обеим сторонам этих слоев: их ширина устанавливается как раз такой, чтобы дать требуемое этими законами сохранения увеличение энтропии.
Возрастание энтропии в ударной волне оказывает еще и другое существенное влияние на движение: если движение газа впереди ударной волны потенциально, то за ней оно, вообще говоря, становится вихревым; мы вернемся к этому обстоятельству в § П4.