
- •§ 1. Уравнение непрерывности
- •§ Pvrff,
- •§ 2. Уравнение Эйлера
- •§ 3. Гидростатика
- •§ 4. Условие отсутствия конвекции
- •§ 5. Уравнение Бернулли
- •§ 6. Поток энергии
- •§ 7. Поток импульса
- •§ 8. Сохранение циркуляции скорости
- •§ 9. Потенциальное движение
- •§ 10. Несжимаемая жидкость
- •§ 12. Гравитационные волны
- •§ 13. Внутренние волны в несжимаемой жидкости
- •§ 14. Волны во вращающейся жидкости
- •Глава II
- •§ 15. Уравнения движения вязкой жидкости
- •§ 16. Диссипация энергии в несжимаемой жидкости
- •§17. Течение по трубе
- •§ 18. Движение жидкости между вращающимися цилиндрами
- •§ 19. Закон подобия
- •§ 20. Течение при малых числах Рейнольдса
- •§ 21. Ламинарный след
- •§ 22. Вязкость суспензий
- •§ 23. Точные решения уравнений движения вязкой жидкости
- •§ 24. Колебательное движение в вязкой жидкости
- •§ 25. Затухание гравитационных волн
- •Глава III
- •§ 26. Устойчивость стационарного движения жидкости
- •§ 27. Устойчивость вращательного движения жидкости
- •§ 29. Неустойчивость тангенциальных разрывов
- •§ 30. Квазипериодическое движение и синхронизация частот3)
- •§ 31. Странный аттрактор
- •§ 32. Переход к турбулентности путем удвоения периодов
- •§ 33. Развитая турбулентность
- •§ 34. Корреляционные функции скоростей
- •§ 35. Турбулентная область и явление отрыва
- •§ 36. Турбулентная струя
- •§ 37. Турбулентный след
- •§ 38. Теорема Жуковского
- •Глава IV
- •§ 39. Ламинарный пограничный слой
- •1. Определить толщину пограничного слоя вблизи критической точки (см. § 10) на обтекаемом жидкостью теле.
- •2. Определить движение в пограничном слое при конфузорном (см. § 23) течении между двумя пересекающимися плоскостями (к.. Pohlhausen, 1921).
- •§ 41. Устойчивость движения в ламинарном пограничном слое
- •2) Эта аналогия указана а в. Тимофеевым (1979) и а а Андроновым и а л. Фабрикантом (1979); ниже мы следуем изложению а. В. Тимофеева.
- •8) При V"(y) шг 0 уравнение (41,2) вообще не имеет решений, удовлетворяющих необходимым граничным условиям.
- •§ 42. Логарифмический профиль скоростей
- •§ 43. Турбулентное течение в трубах
- •§ 44. Турбулентный пограничный слой
- •§ 45. Кризис сопротивления
- •§ 46. Хорошо обтекаемые тела
- •§ 47. Индуктивное сопротивление
- •§ 48. Подъёмная сила тонкого крыла
- •S2(£)-Citt) 6-«
- •Глава V
- •§ 49. Общее уравнение переноса тепла
- •§ 50. Теплопроводность в несжимаемой жидкости
- •§ 51. Теплопроводность в неограниченной среде
- •§ 52. Теплопроводность в ограниченной среде
- •§ 53. Закон подобия для теплопередачи
- •§ 54. Теплопередача в пограничном слое
- •ВгТт « - у«р-
- •§ 55. Нагревание тела в движущейся жидкости
- •§ 56. Свободная конвекция
- •§ 57. Конвективная неустойчивость неподвижной жидкости
- •§ 58. Уравнения гидродинамики для жидкой смеси
- •§ 59. Коэффициенты диффузии и термодиффузии
- •§ 60. Диффузия взвешенных в жидкости частиц
- •Глава VII
- •§ 61. Формула Лапласа
- •§ 62. Капиллярные волны
- •§ 63. Влияние адсорбированных пленок на движение жидкости
- •Глава VIII
- •§ 64. Звуковые волны
- •§ 66. Энергия и импульс звуковых волн
- •§ 66. Отражение и преломление звуковых волн
- •§ 67. Геометрическая акустика
- •§ 68. Распространение звука в движущейся среде
- •§ 69. Собственные колебания
- •§ 70. Сферические волны
- •§71. Цилиндрические волны
- •§ 72. Общее решение волнового уравнения
- •Ctjc42-(X-q2- (*/-г,)2'
- •§ 73. Боковая волна
- •§ 74. Излучение звука
- •§ 75. Возбуждение звука турбулентностью
- •V 1г' 4я j дхидх1к
- •§ 76. Принцип взаимности
- •§ 77. Распространение звука по трубке
- •§ 78. Рассеяние звука
- •§ 79. Поглощение звука
- •4. Определить дополнительное поглощение звука, распространяющегося в смеси двух веществ, связанное с диффузией (и. Г. Шапошников и 3. А Гольдберг, 1952).
- •§ 80. Акустическое течение
- •§ 81. Вторая вязкость
- •Глава IX
- •§ 82. Распространение возмущений в потоке сжимаемого газа
- •2) Во избежание недоразумений оговорим, что если перед обтекаемым телом возникает ударная волна, то эта область несколько увеличивается (см. § 122).
- •§ 83. Стационарный поток сжимаемого газа
- •§ 84. Поверхности разрыва
- •§ 85. Ударная адиабата
- •2) Такой выбор системы координат будет подразумеваться везде в этой главе, за исключением § 92.
- •§ 86. Ударные волны слабой интенсивности
- •§ 87] Направление изменения величин в ударной волне 463
- •§ 87. Направление изменения величин в ударной волне
- •§ 88. Эволюционность ударных волн
- •§ 89. Ударные волны в политропном газе
- •1. Получить формулу
- •§ 90. Гофрировочная неустойчивость ударных волн
- •2) Сравните с аналогичной ситуацией для тангенциальных разрывов — задача 2 § 84.
- •1) Эта неустойчивость тоже была указана с. П. Дьяковым (1954); правильное значение нижней границы в (90,17) найдено в. М. Конторовичем (1957).
- •§ 91. Распространение ударной волны по трубе
- •§ 92. Косая ударная волна
- •§ 93. Ширина ударных волн
- •§ 94. Ударные волны в релаксирующей среде
- •§ 96. Слабые разрывы
- •Глава X
- •§ 97. Истечение газа через сопло
- •§ 98. Вязкое движение сжимаемого газа по трубе
- •§ 99. Одномерное автомодельное движение
- •5. Определить движение в изотермической автомодельной волне разрежения.
- •§ 100. Разрывы в начальных условиях
- •§ 101. Одномерные бегущие волны
- •§ 102. Образование разрывов в звуковой волне
- •§ 103. Характеристики
- •§ 104. Инварианты Римана
- •§ 105. Произвольное одномерное движение сжимаемого газа
- •§ 106. Задача о сильном взрыве
- •§ 107. Сходящаяся сферическая ударная волна
- •2) Эта задача была рассмотрена независимо Гудерлеем (о. Guderleu, 1942) и л. Д. Ландау и к. П. Станюковичем (1944, опубликовано в 1955).
- •§ 108. Теория «мелкой воды»
- •Глава XI
- •§ 109. Волна разрежения
- •§ 111. Пересечение ударных волн с твердой поверхностью
- •§ 112. Сверхзвуковое обтекание угла
- •§ 113. Обтекание конического острия
- •Глава XII
- •§ 114. Потенциальное движение сжимаемого газа
- •§ 115. Стационарные простые волны
- •§ 116. Уравнение Чаплыгина (общая задача
- •§ 117. Характеристики плоского стационарного течения
- •§ 118. Уравнение Эйлера — Трикоми. Переход через звуковую скорость
- •§1191 Решение уравнения эйлера —трикоми 619
- •§ 119. Решения уравнения Эйлера — Трикоми вблизи неособых точек звуковой поверхности
- •§ 120. Обтекание со звуковой скоростью
- •§ 121. Отражение слабого разрыва от звуковой линии
- •Глава XIII
- •§ 122. Образование ударных воли при сверхзвуковом обтекании тел
- •§ 123. Сверхзвуковое обтекание заостренного тела
- •§ 124. Дозвуковое обтекание тонкого крыла
- •§ 125. Сверхзвуковое обтекание крыла
- •§ 126. Околозвуковой закон подобия
- •§ 127. Гиперзвуковой закон подобия
- •Глава XIV
- •§ 128. Медленное горение
- •§ 129. Детонация
- •§ 130. Распространение детонационной волны
- •§ 131. Соотношение между различными режимами горения
- •§ 132. Конденсационные скачки
- •Глава XV
- •§ 133. Тензор энергии-импульса жидкости
- •§ 134. Релятивистские гидродинамические уравнения
- •§ 135. Ударные волны в релятивистской гидродинамике
- •§ 136. Релятивистские уравнения движения вязкой и теплопроводной среды
- •§ 137. Основные свойства сверхтекучей жидкости
- •§ 138. Термомеханический эффект
- •§ 139. Уравнения гидродинамики сверхтекучей жидкости
- •§ 140. Диссипативные процессы в сверхтекучей жидкости
- •§ 141. Распространение звука в сверхтекучей жидкости
§ 76. Принцип взаимности
При выводе уравнений звуковой волны в § 64 предполагалось, что волна распространяется в однородной среде. В частности, плотность среды р0 и скорость звука в ней с рассматривались как постоянные величины. Имея в виду получить некоторые общие соотношения, применимые и в общем случае произвольной неоднородной среды, выведем предварительно уравнение распространения звука в такой среде.
Напишем уравнение непрерывности в виде
^ + Pdivv = 0.
Но в силу адиабатичности звука имеем:
dt \dpjsdt с2 dt c2Vd'^ ^У' и уравнение непрерывности приводится к виду
~ + Wp + рс2 div v = 0.
Положим, как обычно, р = ро + р', причем ро является теперь заданной функцией координат. Что же касается давления, то в р — ро -+- р' должно по-прежнему быть ро = const, поскольку в равновесии давление должно быть постоянно вдоль всей среды (если, конечно, отсутствует внешнее поле). Таким образом, с точностью до величин второго порядка малости имеем:
-^- + p0c2divv = 0.
Это уравнение совпадает по форме с уравнением (64,5), но коэффициент рос2 в нем есть функция координат. Что касается уравнения Эйлера, то мы имеем, как и в § 64:
dv = _ Уп' dt ро *
Исключая v из обоих этих уравнений (и опуская индекс у р0)', получаем окончательно уравнение распространения звука в неоднородной среде:
Если речь идет о монохроматической волне с частотой со, то р' — —со2//, так что
Ai"1f + -^Pf = Q- <76'2>
Рассмотрим звуковую волну, излучаемую источником небольших размеров, совершающим пуяьсационные колебания (такое
излучение, как мы видели в § 74, изотропно). Обозначим точку, в которой находится источник, посредством Л, а давление р' в излучаемой им волне в точке В1) посредством рл(В). Если тот же самый источник помещен в точку В, то создаваемое им в точке Л давление обозначим соответственно посредством рв(А). Выведем соотношение между рл(В) и рв(А).
Для этого воспользуемся уравнением (76,2), применив его один раз к излучению источника, находящегося в точке А, а другой раз — к излучению источника, находящегося в В:
'2 '2
div-^ + ^Pi-O, div^+^p^O.
Умножим первое уравнение на р'в, а второе на р'А, и вычтем второе из первого. Получаем:
div
Проинтегрируем это уравнение по объему, заключенному между бесконечно удаленной замкнутой поверхностью С и двумя малыми сферами Са и Св, окружающими соответственно точки А и В. Объемный интеграл преобразуется в интеграл по этим трем поверхностям, причем интеграл по С обращается в нуль, поскольку на бесконечности звуковое поле исчезает. Таким образом, получим:
(76,3)
Са+св
Внутри малой сферы СА давление р'А в волне, создаваемой источником, находящимся в А, быстро меняется с расстоянием от А, и потому градиент ур'А велик. Давление же р'в, создаваемое источником, находящимся в В, в области вблизи точки А, значительно удаленной от В, является медленно меняющейся функцией координат, так что его градиент \р'в относительно мал. При достаточно малом радиусе сферы СА можно поэтому в интеграле по ней пренебречь вторым членом подынтегрального выражения по сравнению с первым, а в последнем можно вынести почти постоянную величину р'в из-под знака интеграла, заменив ее значением в точке А. Аналогичные рассуждения применимы к интегралу по сфере Св> и в результате мы получаем из (76,3) следующее соотношение:
*) Размеры источника должны быть чалыми по сравнению с расстоянием между А и В, а также по сравнению с длиной волны.
ли» S ^
Но Vp'/P = —^v l^t; поэтому это равенство можно переписать в виде
Р'в(л)-Ъ7 [vAdf = p'A(B)w\vBdf.
СА св
Интеграл ^ vAdf представляет собой количество жидкости,
протекающей через поверхность сферы Сд в единицу времени, т. е. изменение (в 1 сек.) объема пульсирующего источника звука. Поскольку источники в точках А и В тождественны, то ясно, что
J vAdf= J \Bdf,
и, следовательно,
р'л(В) = р'в(А). (76.4)
Это равенство представляет собой содержание так называемого принципа взаимности: давление, создаваемое в точке В источником, находящимся в точке А, равно давлению, создаваемому в А таким же источником, находящимся в В. Подчеркнем, что этот результат относится, в частности, и к тому случаю, когда среда представляет собой совокупность нескольких различных областей, каждая из которых однородна. При распространении звука в такой среде на поверхностях раздела различных областей происходит отражение и преломление. Таким образом, принцип взаимности применим и в тех случаях, когда на пути своего распространения от точки А к В и обратно волна испытывает отражения и преломления.
Задача
Вывести принцип взаимности для дипольного звукового излучения, создаваемого источником, совершающим колебания без изменения своего объема. Решение. В данном случае
$vxrf$ = 0 (1)
и при вычислении интегралов в (76,3) необходимо учесть следующее приближение. Для этого пишем с точностью до членов первого порядка
PB = PB{A) + t4p'B, (2)
где г — радиус-вектор из точки А В интеграле
оба члена имеют теперь одинаковый порядок величины. Подставляя сюда рв из (2) и учитывая (1), получим
СА
Далее, выносим почти постоянную величину Vp'B = — pvB из-под знака интеграла, заменив ее значением в точке А:
(рА — плотность среды в точке А). Для вычисления этого интеграла замечаем, что вблизи источника жидкость можно считать несжимаемой (см. §74), и потому для давления внутри малой сферы Са можно написать согласно
(ИД)
/ Аг
РА = — рф = р
В монохроматической волне v = —/<av, А = — шА; вводя также единичный вектор пд в направлении вектора А для источника, находящегося в точке А, найдем, что интеграл (3) пропорционален по величине
рл\в{А) пл.
Аналогично интеграл но сфере Св будет пропорционален
—рвУл(В)пв
с тем же коэффициентом пропорциональности. Приравнивая их сумму нулю, найдем искомое соотношение
Раув(А)па = Р_вУа(В)пв,
выражающее собой принцип взаимности для дипольного звукового излучения.