
- •§ 1. Уравнение непрерывности
- •§ Pvrff,
- •§ 2. Уравнение Эйлера
- •§ 3. Гидростатика
- •§ 4. Условие отсутствия конвекции
- •§ 5. Уравнение Бернулли
- •§ 6. Поток энергии
- •§ 7. Поток импульса
- •§ 8. Сохранение циркуляции скорости
- •§ 9. Потенциальное движение
- •§ 10. Несжимаемая жидкость
- •§ 12. Гравитационные волны
- •§ 13. Внутренние волны в несжимаемой жидкости
- •§ 14. Волны во вращающейся жидкости
- •Глава II
- •§ 15. Уравнения движения вязкой жидкости
- •§ 16. Диссипация энергии в несжимаемой жидкости
- •§17. Течение по трубе
- •§ 18. Движение жидкости между вращающимися цилиндрами
- •§ 19. Закон подобия
- •§ 20. Течение при малых числах Рейнольдса
- •§ 21. Ламинарный след
- •§ 22. Вязкость суспензий
- •§ 23. Точные решения уравнений движения вязкой жидкости
- •§ 24. Колебательное движение в вязкой жидкости
- •§ 25. Затухание гравитационных волн
- •Глава III
- •§ 26. Устойчивость стационарного движения жидкости
- •§ 27. Устойчивость вращательного движения жидкости
- •§ 29. Неустойчивость тангенциальных разрывов
- •§ 30. Квазипериодическое движение и синхронизация частот3)
- •§ 31. Странный аттрактор
- •§ 32. Переход к турбулентности путем удвоения периодов
- •§ 33. Развитая турбулентность
- •§ 34. Корреляционные функции скоростей
- •§ 35. Турбулентная область и явление отрыва
- •§ 36. Турбулентная струя
- •§ 37. Турбулентный след
- •§ 38. Теорема Жуковского
- •Глава IV
- •§ 39. Ламинарный пограничный слой
- •1. Определить толщину пограничного слоя вблизи критической точки (см. § 10) на обтекаемом жидкостью теле.
- •2. Определить движение в пограничном слое при конфузорном (см. § 23) течении между двумя пересекающимися плоскостями (к.. Pohlhausen, 1921).
- •§ 41. Устойчивость движения в ламинарном пограничном слое
- •2) Эта аналогия указана а в. Тимофеевым (1979) и а а Андроновым и а л. Фабрикантом (1979); ниже мы следуем изложению а. В. Тимофеева.
- •8) При V"(y) шг 0 уравнение (41,2) вообще не имеет решений, удовлетворяющих необходимым граничным условиям.
- •§ 42. Логарифмический профиль скоростей
- •§ 43. Турбулентное течение в трубах
- •§ 44. Турбулентный пограничный слой
- •§ 45. Кризис сопротивления
- •§ 46. Хорошо обтекаемые тела
- •§ 47. Индуктивное сопротивление
- •§ 48. Подъёмная сила тонкого крыла
- •S2(£)-Citt) 6-«
- •Глава V
- •§ 49. Общее уравнение переноса тепла
- •§ 50. Теплопроводность в несжимаемой жидкости
- •§ 51. Теплопроводность в неограниченной среде
- •§ 52. Теплопроводность в ограниченной среде
- •§ 53. Закон подобия для теплопередачи
- •§ 54. Теплопередача в пограничном слое
- •ВгТт « - у«р-
- •§ 55. Нагревание тела в движущейся жидкости
- •§ 56. Свободная конвекция
- •§ 57. Конвективная неустойчивость неподвижной жидкости
- •§ 58. Уравнения гидродинамики для жидкой смеси
- •§ 59. Коэффициенты диффузии и термодиффузии
- •§ 60. Диффузия взвешенных в жидкости частиц
- •Глава VII
- •§ 61. Формула Лапласа
- •§ 62. Капиллярные волны
- •§ 63. Влияние адсорбированных пленок на движение жидкости
- •Глава VIII
- •§ 64. Звуковые волны
- •§ 66. Энергия и импульс звуковых волн
- •§ 66. Отражение и преломление звуковых волн
- •§ 67. Геометрическая акустика
- •§ 68. Распространение звука в движущейся среде
- •§ 69. Собственные колебания
- •§ 70. Сферические волны
- •§71. Цилиндрические волны
- •§ 72. Общее решение волнового уравнения
- •Ctjc42-(X-q2- (*/-г,)2'
- •§ 73. Боковая волна
- •§ 74. Излучение звука
- •§ 75. Возбуждение звука турбулентностью
- •V 1г' 4я j дхидх1к
- •§ 76. Принцип взаимности
- •§ 77. Распространение звука по трубке
- •§ 78. Рассеяние звука
- •§ 79. Поглощение звука
- •4. Определить дополнительное поглощение звука, распространяющегося в смеси двух веществ, связанное с диффузией (и. Г. Шапошников и 3. А Гольдберг, 1952).
- •§ 80. Акустическое течение
- •§ 81. Вторая вязкость
- •Глава IX
- •§ 82. Распространение возмущений в потоке сжимаемого газа
- •2) Во избежание недоразумений оговорим, что если перед обтекаемым телом возникает ударная волна, то эта область несколько увеличивается (см. § 122).
- •§ 83. Стационарный поток сжимаемого газа
- •§ 84. Поверхности разрыва
- •§ 85. Ударная адиабата
- •2) Такой выбор системы координат будет подразумеваться везде в этой главе, за исключением § 92.
- •§ 86. Ударные волны слабой интенсивности
- •§ 87] Направление изменения величин в ударной волне 463
- •§ 87. Направление изменения величин в ударной волне
- •§ 88. Эволюционность ударных волн
- •§ 89. Ударные волны в политропном газе
- •1. Получить формулу
- •§ 90. Гофрировочная неустойчивость ударных волн
- •2) Сравните с аналогичной ситуацией для тангенциальных разрывов — задача 2 § 84.
- •1) Эта неустойчивость тоже была указана с. П. Дьяковым (1954); правильное значение нижней границы в (90,17) найдено в. М. Конторовичем (1957).
- •§ 91. Распространение ударной волны по трубе
- •§ 92. Косая ударная волна
- •§ 93. Ширина ударных волн
- •§ 94. Ударные волны в релаксирующей среде
- •§ 96. Слабые разрывы
- •Глава X
- •§ 97. Истечение газа через сопло
- •§ 98. Вязкое движение сжимаемого газа по трубе
- •§ 99. Одномерное автомодельное движение
- •5. Определить движение в изотермической автомодельной волне разрежения.
- •§ 100. Разрывы в начальных условиях
- •§ 101. Одномерные бегущие волны
- •§ 102. Образование разрывов в звуковой волне
- •§ 103. Характеристики
- •§ 104. Инварианты Римана
- •§ 105. Произвольное одномерное движение сжимаемого газа
- •§ 106. Задача о сильном взрыве
- •§ 107. Сходящаяся сферическая ударная волна
- •2) Эта задача была рассмотрена независимо Гудерлеем (о. Guderleu, 1942) и л. Д. Ландау и к. П. Станюковичем (1944, опубликовано в 1955).
- •§ 108. Теория «мелкой воды»
- •Глава XI
- •§ 109. Волна разрежения
- •§ 111. Пересечение ударных волн с твердой поверхностью
- •§ 112. Сверхзвуковое обтекание угла
- •§ 113. Обтекание конического острия
- •Глава XII
- •§ 114. Потенциальное движение сжимаемого газа
- •§ 115. Стационарные простые волны
- •§ 116. Уравнение Чаплыгина (общая задача
- •§ 117. Характеристики плоского стационарного течения
- •§ 118. Уравнение Эйлера — Трикоми. Переход через звуковую скорость
- •§1191 Решение уравнения эйлера —трикоми 619
- •§ 119. Решения уравнения Эйлера — Трикоми вблизи неособых точек звуковой поверхности
- •§ 120. Обтекание со звуковой скоростью
- •§ 121. Отражение слабого разрыва от звуковой линии
- •Глава XIII
- •§ 122. Образование ударных воли при сверхзвуковом обтекании тел
- •§ 123. Сверхзвуковое обтекание заостренного тела
- •§ 124. Дозвуковое обтекание тонкого крыла
- •§ 125. Сверхзвуковое обтекание крыла
- •§ 126. Околозвуковой закон подобия
- •§ 127. Гиперзвуковой закон подобия
- •Глава XIV
- •§ 128. Медленное горение
- •§ 129. Детонация
- •§ 130. Распространение детонационной волны
- •§ 131. Соотношение между различными режимами горения
- •§ 132. Конденсационные скачки
- •Глава XV
- •§ 133. Тензор энергии-импульса жидкости
- •§ 134. Релятивистские гидродинамические уравнения
- •§ 135. Ударные волны в релятивистской гидродинамике
- •§ 136. Релятивистские уравнения движения вязкой и теплопроводной среды
- •§ 137. Основные свойства сверхтекучей жидкости
- •§ 138. Термомеханический эффект
- •§ 139. Уравнения гидродинамики сверхтекучей жидкости
- •§ 140. Диссипативные процессы в сверхтекучей жидкости
- •§ 141. Распространение звука в сверхтекучей жидкости
§ 75. Возбуждение звука турбулентностью
Турбулентные пульсации скорости тоже являются источником возбуждения звука в окружающем объеме жидкости. В этом параграфе будет изложена общая теория этого явления (М J Lighthiil, 1952). Будет рассматриваться ситуация, когда турбулентность занимает конечную область Уо, окруженную неограниченным объемом неподвижной жидкости. При этом самая турбулентность рассматривается в рамках теории несжимаемой жидкости — вызываемым пульсациями изменением плотности пренебрегаем; это значит, что скорость турбулентного движения предполагается малой по сравнению со скоростью звука (как это предполагалось и во всей главе III).
Начнем с вывода общего уравнения, учитывающего, наряду с движением в звуковых волнах, также и движение жидкости в турбулентной области. Отличие от произведенного в § 64 вывода состоит лишь в том, что должен быть сохранен нелинейный член (vV)v — хотя скорость v мала по сравнению с с, но она велика по сравнению со скоростью жидкости в звуковой волне. Поэтому вместо (64,3) пишем:
Применив к этому уравнению операцию div и используя уравнение (64,5)
+p0c2divv = 0,
получим:
1 <ЭУ А , д ( dV{\
Правую сторону этого уравнения можно преобразовать с помощью уравнения непрерывности divv = 0 (турбулентность рассматривается как несжимаемая!): можно вынести знак дифференцирования по хк из-под скобок. Окончательно пишем:
?-^-V-pfe. Ти = оРк (75,1)
(индекс у ро снова опускаем). Вне турбулентной области выражение в правой стороне этого уравнения представляет собой малую величину второго порядка и может быть опущено, так что мы возвращаемся к волновому уравнению распространения звука. Правая же сторона, отличная от нуля в объеме Vo, играет роль источника звука. В этом объеме v —скорость турбулентного движения.
<75'2>
dV,
V 1г' 4я j дхидх1к
(см. II, § 62). Здесь г — радиус-вектор точки наблюдения, rj — бегущей точки в области интегрирования, i? = |r— п|; подынтегральное выражение берется в «запаздывающий» момент времени t — R/c. Интегрирование в (75,2) фактически производится лишь по объему Уо, в котором подынтегральное выражение отлично от нуля.
Основная часть энергии турбулентного движения заключена в частотах ~ы/7, отвечающих основному масштабу турбулентности /; и — характерная скорость движения (см. § 33). Таковы же будут, очевидно, и основные частоты в спектре излучаемых звуковых волн. Соответствующие же длины волн К ~ cl/u » /.
Для определения интенсивности излучения достаточно рассмотреть звуковое поле на расстояниях, больших по сравнению с длиной волны К (в «волновой зоне»), эти расстояния велики "и по сравнению с линейными размерами источника — турбулентной области1). Множитель 1/R в подынтегральном выражении в этой зоне можно заменить множителем \/т и вынести его из-под знака интеграла (г — расстояние точки наблюдения до начала координат, выбранного где-либо внутри источника); тем самым мы пренебрегаем членами, убывающими быстрее, чем 1/г, которые все равно не дают вклада в интенсивность уходящих на бесконечность волн. Таким образом,
d2Tik (г,, t)
дхндхгк
Производные в подынтегральном выражении берутся до взятия значения при t — R/c, т. е. только по первому аргументу функций Tift(t\,t). Эти производные можно заменить производными от функций Ttk(r, t — R/c), взятыми по обоим аргументам, вычитая из них каждый раз производные по второму аргументу. Первые представляют собой полные дивергенции и интегралы от них, будучи преобразованы в интегралы по удаленным замкнутым поверхностям, обращаются в ноль, поскольку вне турбулентной области Г,-* = 0. Производные же по «текущим» координатам гь входящим в состав аргумента t — R/c, можно заменить производными по координатам точки наблюде-
') Говоря о порядках величин, мы не проводим различия между основным масштабом / и размерами турбулентной области, хотя последние и могут заметно превышать первый.
ния г, поскольку г и г( входят только в виде разности R — = |г — ri|. Таким образом, приходим к выражению
р'^ »=шт£^\т*(г- '-4-И- (75-4>
Время t — R/c отличается от времени t — r/c на интервал ~//с. Но такой интервал времени мал по сравнению с периодами 1/и основных турбулентных пульсаций. Это позволяет заменить аргумент t — R/c в подынтегральном выражении н.а t — r/c = xl). Производя после этого дифференцирование под знаком интеграла, и заметив, что dr/dxt = tii (n — единичный вектор в направлении г), получим:
Р' <г' 0 = ~idhn^ \ f <* <r" т) dVi' <75'5>
где точка означает дифференцирование по т.
Тензор tik, как и всякий симметричный тензор с неравным нулю следом, может быть представлен в виде
Т,к = (f« - j fHbik) + i- f ublk e. Qlk + Qbik, (75,6)
где Qik — «неприводимый» тензор с равным нулю следом, a Q — скаляр. Тогда сферическая волна (75,5) разобьется на сумму двух членов
P'(r' ') = -4l&r{$Q(r» 4)dVi + ni*k\Qik{rb x)dV^, (75,7)
из которых первый представляет собой излучение монопольного, а второй — квадрупольного источника.
4)
При этом мы отказываемся от рассмотрения
спектрального состава излучения и
ограничиваемся основными частотами,
определяющими полную интенсивность.
Отметим также, что указанную замену
нельзя было бы произвести на более
ранней стадии преобразований, в (75,3),
поскольку интеграл обратился бы в
нуль.
2)
Интегрирование по направлениям п
осуществляется
следующими выражениями для средних
значений произведений двух или четырех
компонент вектора п:
лагается при этом «стационарной»). Эту последнюю операцию осуществляем, написав квадрат интегралов в виде двойных интегралов и производя усреднение (которое обозначаем угловыми скобками) под знаком интегралов. В результате получим следующий результат:
Ро
60яс5
+ -Щ?\\<в»{*и t)Qi*(r2, x))dVxdV2. (75,8)
«Перекрестное» произведение двух членов в (75,7) при интегрировании по направлениям выпадает, так что полная интенсивность оказывается равной сумме монопольного и квадрупольного излучений. Обе эти части в данном случае — вообще говоря, одинакового порядка величины.
Оценим этот порядок величины (вернее — выясним зависимость / от параметров турбулентного движения). Компоненты тензора Г,-* ~ и2, где и— характерная скорость турбулентного движения. Каждое дифференцирование по времени умножает этот порядок величин на характерную частоту и/1. Поэтому Q ~ и4//2. Корреляция между скоростями турбулентных пульсаций в различных точках простирается на расстояния ~1. Поэтому количество энергии, испускаемой в виде звука единицей массы турбулентной среды в единицу времени
вэ.~-рг-£/3 = -^-. (75,9)
Интенсивность излучения пропорциональна, таким образом, восьмой степени скорости турбулентного движения.
Турбулентное движение поддерживается за счет мощности, подводимой от некоторого внешнего источника. В «стационарном» случае эта мощность совпадает с диссипируемой в единицу времени энергией. Отнесенная к единице массы, эта последняя еДисс ~ и3/1'). Акустический коэффициент полезного действия можно определить как отношение излучаемой мощности к диссипируемой:
')
См. (33,1).
Мы
не делаем здесь различия между и
и
Ди; выбор системы отсчета, по
отношению к которой рассматривается
движение, устанавливается
тем, что жидкость вне турбулентной
области предполагается неподвижной.
Стоящая здесь высокая степень отношения и/с приводит к тому, что при и/с «С 1 эффективность турбулентности как излучателя звука низка.