
- •§ 1. Уравнение непрерывности
- •§ Pvrff,
- •§ 2. Уравнение Эйлера
- •§ 3. Гидростатика
- •§ 4. Условие отсутствия конвекции
- •§ 5. Уравнение Бернулли
- •§ 6. Поток энергии
- •§ 7. Поток импульса
- •§ 8. Сохранение циркуляции скорости
- •§ 9. Потенциальное движение
- •§ 10. Несжимаемая жидкость
- •§ 12. Гравитационные волны
- •§ 13. Внутренние волны в несжимаемой жидкости
- •§ 14. Волны во вращающейся жидкости
- •Глава II
- •§ 15. Уравнения движения вязкой жидкости
- •§ 16. Диссипация энергии в несжимаемой жидкости
- •§17. Течение по трубе
- •§ 18. Движение жидкости между вращающимися цилиндрами
- •§ 19. Закон подобия
- •§ 20. Течение при малых числах Рейнольдса
- •§ 21. Ламинарный след
- •§ 22. Вязкость суспензий
- •§ 23. Точные решения уравнений движения вязкой жидкости
- •§ 24. Колебательное движение в вязкой жидкости
- •§ 25. Затухание гравитационных волн
- •Глава III
- •§ 26. Устойчивость стационарного движения жидкости
- •§ 27. Устойчивость вращательного движения жидкости
- •§ 29. Неустойчивость тангенциальных разрывов
- •§ 30. Квазипериодическое движение и синхронизация частот3)
- •§ 31. Странный аттрактор
- •§ 32. Переход к турбулентности путем удвоения периодов
- •§ 33. Развитая турбулентность
- •§ 34. Корреляционные функции скоростей
- •§ 35. Турбулентная область и явление отрыва
- •§ 36. Турбулентная струя
- •§ 37. Турбулентный след
- •§ 38. Теорема Жуковского
- •Глава IV
- •§ 39. Ламинарный пограничный слой
- •1. Определить толщину пограничного слоя вблизи критической точки (см. § 10) на обтекаемом жидкостью теле.
- •2. Определить движение в пограничном слое при конфузорном (см. § 23) течении между двумя пересекающимися плоскостями (к.. Pohlhausen, 1921).
- •§ 41. Устойчивость движения в ламинарном пограничном слое
- •2) Эта аналогия указана а в. Тимофеевым (1979) и а а Андроновым и а л. Фабрикантом (1979); ниже мы следуем изложению а. В. Тимофеева.
- •8) При V"(y) шг 0 уравнение (41,2) вообще не имеет решений, удовлетворяющих необходимым граничным условиям.
- •§ 42. Логарифмический профиль скоростей
- •§ 43. Турбулентное течение в трубах
- •§ 44. Турбулентный пограничный слой
- •§ 45. Кризис сопротивления
- •§ 46. Хорошо обтекаемые тела
- •§ 47. Индуктивное сопротивление
- •§ 48. Подъёмная сила тонкого крыла
- •S2(£)-Citt) 6-«
- •Глава V
- •§ 49. Общее уравнение переноса тепла
- •§ 50. Теплопроводность в несжимаемой жидкости
- •§ 51. Теплопроводность в неограниченной среде
- •§ 52. Теплопроводность в ограниченной среде
- •§ 53. Закон подобия для теплопередачи
- •§ 54. Теплопередача в пограничном слое
- •ВгТт « - у«р-
- •§ 55. Нагревание тела в движущейся жидкости
- •§ 56. Свободная конвекция
- •§ 57. Конвективная неустойчивость неподвижной жидкости
- •§ 58. Уравнения гидродинамики для жидкой смеси
- •§ 59. Коэффициенты диффузии и термодиффузии
- •§ 60. Диффузия взвешенных в жидкости частиц
- •Глава VII
- •§ 61. Формула Лапласа
- •§ 62. Капиллярные волны
- •§ 63. Влияние адсорбированных пленок на движение жидкости
- •Глава VIII
- •§ 64. Звуковые волны
- •§ 66. Энергия и импульс звуковых волн
- •§ 66. Отражение и преломление звуковых волн
- •§ 67. Геометрическая акустика
- •§ 68. Распространение звука в движущейся среде
- •§ 69. Собственные колебания
- •§ 70. Сферические волны
- •§71. Цилиндрические волны
- •§ 72. Общее решение волнового уравнения
- •Ctjc42-(X-q2- (*/-г,)2'
- •§ 73. Боковая волна
- •§ 74. Излучение звука
- •§ 75. Возбуждение звука турбулентностью
- •V 1г' 4я j дхидх1к
- •§ 76. Принцип взаимности
- •§ 77. Распространение звука по трубке
- •§ 78. Рассеяние звука
- •§ 79. Поглощение звука
- •4. Определить дополнительное поглощение звука, распространяющегося в смеси двух веществ, связанное с диффузией (и. Г. Шапошников и 3. А Гольдберг, 1952).
- •§ 80. Акустическое течение
- •§ 81. Вторая вязкость
- •Глава IX
- •§ 82. Распространение возмущений в потоке сжимаемого газа
- •2) Во избежание недоразумений оговорим, что если перед обтекаемым телом возникает ударная волна, то эта область несколько увеличивается (см. § 122).
- •§ 83. Стационарный поток сжимаемого газа
- •§ 84. Поверхности разрыва
- •§ 85. Ударная адиабата
- •2) Такой выбор системы координат будет подразумеваться везде в этой главе, за исключением § 92.
- •§ 86. Ударные волны слабой интенсивности
- •§ 87] Направление изменения величин в ударной волне 463
- •§ 87. Направление изменения величин в ударной волне
- •§ 88. Эволюционность ударных волн
- •§ 89. Ударные волны в политропном газе
- •1. Получить формулу
- •§ 90. Гофрировочная неустойчивость ударных волн
- •2) Сравните с аналогичной ситуацией для тангенциальных разрывов — задача 2 § 84.
- •1) Эта неустойчивость тоже была указана с. П. Дьяковым (1954); правильное значение нижней границы в (90,17) найдено в. М. Конторовичем (1957).
- •§ 91. Распространение ударной волны по трубе
- •§ 92. Косая ударная волна
- •§ 93. Ширина ударных волн
- •§ 94. Ударные волны в релаксирующей среде
- •§ 96. Слабые разрывы
- •Глава X
- •§ 97. Истечение газа через сопло
- •§ 98. Вязкое движение сжимаемого газа по трубе
- •§ 99. Одномерное автомодельное движение
- •5. Определить движение в изотермической автомодельной волне разрежения.
- •§ 100. Разрывы в начальных условиях
- •§ 101. Одномерные бегущие волны
- •§ 102. Образование разрывов в звуковой волне
- •§ 103. Характеристики
- •§ 104. Инварианты Римана
- •§ 105. Произвольное одномерное движение сжимаемого газа
- •§ 106. Задача о сильном взрыве
- •§ 107. Сходящаяся сферическая ударная волна
- •2) Эта задача была рассмотрена независимо Гудерлеем (о. Guderleu, 1942) и л. Д. Ландау и к. П. Станюковичем (1944, опубликовано в 1955).
- •§ 108. Теория «мелкой воды»
- •Глава XI
- •§ 109. Волна разрежения
- •§ 111. Пересечение ударных волн с твердой поверхностью
- •§ 112. Сверхзвуковое обтекание угла
- •§ 113. Обтекание конического острия
- •Глава XII
- •§ 114. Потенциальное движение сжимаемого газа
- •§ 115. Стационарные простые волны
- •§ 116. Уравнение Чаплыгина (общая задача
- •§ 117. Характеристики плоского стационарного течения
- •§ 118. Уравнение Эйлера — Трикоми. Переход через звуковую скорость
- •§1191 Решение уравнения эйлера —трикоми 619
- •§ 119. Решения уравнения Эйлера — Трикоми вблизи неособых точек звуковой поверхности
- •§ 120. Обтекание со звуковой скоростью
- •§ 121. Отражение слабого разрыва от звуковой линии
- •Глава XIII
- •§ 122. Образование ударных воли при сверхзвуковом обтекании тел
- •§ 123. Сверхзвуковое обтекание заостренного тела
- •§ 124. Дозвуковое обтекание тонкого крыла
- •§ 125. Сверхзвуковое обтекание крыла
- •§ 126. Околозвуковой закон подобия
- •§ 127. Гиперзвуковой закон подобия
- •Глава XIV
- •§ 128. Медленное горение
- •§ 129. Детонация
- •§ 130. Распространение детонационной волны
- •§ 131. Соотношение между различными режимами горения
- •§ 132. Конденсационные скачки
- •Глава XV
- •§ 133. Тензор энергии-импульса жидкости
- •§ 134. Релятивистские гидродинамические уравнения
- •§ 135. Ударные волны в релятивистской гидродинамике
- •§ 136. Релятивистские уравнения движения вязкой и теплопроводной среды
- •§ 137. Основные свойства сверхтекучей жидкости
- •§ 138. Термомеханический эффект
- •§ 139. Уравнения гидродинамики сверхтекучей жидкости
- •§ 140. Диссипативные процессы в сверхтекучей жидкости
- •§ 141. Распространение звука в сверхтекучей жидкости
§ 66. Отражение и преломление звуковых волн
Когда звуковая волна падает на границу раздела между двумя различными средами, она отражается и преломляется. Движение в первой среде является тогда наложением двух волн (падающей и отраженной), а во второй среде имеется одна (преломленная) волна. Связь между всеми тремя волнами определяется граничными условиями на поверхности раздела.
Рассмотрим отражение и преломление монохроматической продольной волны в случае плоской границы раздела. Плоскость. уг выберем в качестве граничной. Легко видеть, что все три волны — падающая, отраженная и преломленная — будут иметь одинаковые частоты со и одинаковые компоненты ky, kz волнового вектора (но не компоненту kx по направлению, перпендикулярному к плоскости раздела). Действительно, в неограниченной однородной среде монохроматическая волна с постоянными к и со является решением уравнений движения. При наличии границы раздела добавляются лишь граничные условия,, которые в нашем случае относятся к * = 0, т. е. не зависят ни от времени, ни от координат у и г. Поэтому зависимость решения от t и от у, г остается неизменной во всем пространстве и времени, т. е. со, ky, kz остаются теми же, какими они были в падающей волне.
Из этого результата могут быть непосредственно выведены соотношения, определяющие направления распространения отраженной и преломленной волн. Пусть ху— плоскость падения волны. Тогда в падающей волне kz = 0; то же самое должно иметь место и для отраженной и преломленной волн. Таким образом, направления распространения падающей, отраженной и преломленной волн лежат в одной плоскости.
Пусть 8 — угол между направлением волны и осью х. Тогда из равенства величин ky = (и/с) sin 6 для падающей и отраженной волн следует, что
е,=е[, (66,1)
(66,2)
sin 9i с1
Sin 02 Сг
между углом падения 8i и углом преломления 02 (ci и с2 — скорости звука в обеих средах).
Для того чтобы получить количественное соотношение между интенсивностями падающей, отраженной и преломленной волн, лишем потенциалы скорости в этих волнах соответственно в виде
Ф! = А1 ехр {ш> cos 8( + -Jp sin 8( — ,
Ф; = A\ ехр {ш> ( - ± cos 8, + -JL sin в, -1)],
Ф2 = Л2ехр {«о cos 82 + sin в2 — /)}.
На поверхности раздела (* = 0) должны быть равными давления (р = —рф) и нормальные скорости (vx = д<р/дх) в обеих средах; эти условия приводят к равенствам
Коэффициент отражения R определяется как отношение средних (по времени) плотностей потока энергии в отраженной и падающей волнах. Поскольку плотность потока энергии в плоской волне равна сро*, то имеем:
Простое вычисление приводит к результату
„_ f P2tge2-p,tg8i у ,Rfi п
Углы 8i и 82 связаны друг с другом соотношением (66,2); выразив 82 через 8ь можно представить коэффициент отражения; в виде
Г
р2с2
cos
et
-
р, - с\
sin2
9,
I
R
=
ЛГ—г
'1'»-
" (°М>
L Р2С2 COS 6[ + pt *\J Cj — с2 sin 6, J
Для нормального падения (8i = 0) эта формула дает просто»
\ р2с2 + PlCl ) v ' '
-При угле падения, определяющемся из
tg2
et
=
f;2~p'2;, (бб,е>
коэффициент отражения обращается в нуль, т. е. звуковая волна целиком преломляется, не отражаясь вовсе; такой случай, возможен, если Ci>c2, но р2с2 > piCi (или наоборот).
Задача
Определить давление, оказываемое звуковой волной на границу раздела-между двумя жидкостями.
Решение. Сумма полных потоков энергии в отраженной и преломленной волнах должна быть равна падающему потоку энергии. Относя поток энергии к единице площади поверхности раздела, напишем это условие в виде
cos 6j = clEl cos 9! -f- c2E2 cos 62,
где £(, E[, E2 — плотности энергии в падающей, отраженной и преломленной волнах. Вводя коэффициент отражения R = EjEl, имеем отсюда
С\ cos 01 с2 cos 02
(1 -R) Ei.
Искомое давление р определяется как ^-компонента импульса, теряемого в; единицу времени звуковой волной (отнесенная к единице площади гранит* раздела). С помощью выражения (65,12) для тензора плотности потока импульса в звуковой волне найдем:
р = Ei cos2 0j + Е\ cos2 8, — Е2 cos2 0^ Подставляя выражение для £2, вводя R и используя (66,2), получим: p=ll Sin 0, COS0! [(1 +R) Ctg0! - (I — У?) ctg 62].
Для нормального падения (0( = 0) найдем с помощью (66,5)
2 2 , 2 2 „_ „ 2 •
Р Г P|Cl + P2C2-2PlP2tl 1 ' L (Р,С, + Р2С2)2. J'