
- •§ 1. Уравнение непрерывности
- •§ Pvrff,
- •§ 2. Уравнение Эйлера
- •§ 3. Гидростатика
- •§ 4. Условие отсутствия конвекции
- •§ 5. Уравнение Бернулли
- •§ 6. Поток энергии
- •§ 7. Поток импульса
- •§ 8. Сохранение циркуляции скорости
- •§ 9. Потенциальное движение
- •§ 10. Несжимаемая жидкость
- •§ 12. Гравитационные волны
- •§ 13. Внутренние волны в несжимаемой жидкости
- •§ 14. Волны во вращающейся жидкости
- •Глава II
- •§ 15. Уравнения движения вязкой жидкости
- •§ 16. Диссипация энергии в несжимаемой жидкости
- •§17. Течение по трубе
- •§ 18. Движение жидкости между вращающимися цилиндрами
- •§ 19. Закон подобия
- •§ 20. Течение при малых числах Рейнольдса
- •§ 21. Ламинарный след
- •§ 22. Вязкость суспензий
- •§ 23. Точные решения уравнений движения вязкой жидкости
- •§ 24. Колебательное движение в вязкой жидкости
- •§ 25. Затухание гравитационных волн
- •Глава III
- •§ 26. Устойчивость стационарного движения жидкости
- •§ 27. Устойчивость вращательного движения жидкости
- •§ 29. Неустойчивость тангенциальных разрывов
- •§ 30. Квазипериодическое движение и синхронизация частот3)
- •§ 31. Странный аттрактор
- •§ 32. Переход к турбулентности путем удвоения периодов
- •§ 33. Развитая турбулентность
- •§ 34. Корреляционные функции скоростей
- •§ 35. Турбулентная область и явление отрыва
- •§ 36. Турбулентная струя
- •§ 37. Турбулентный след
- •§ 38. Теорема Жуковского
- •Глава IV
- •§ 39. Ламинарный пограничный слой
- •1. Определить толщину пограничного слоя вблизи критической точки (см. § 10) на обтекаемом жидкостью теле.
- •2. Определить движение в пограничном слое при конфузорном (см. § 23) течении между двумя пересекающимися плоскостями (к.. Pohlhausen, 1921).
- •§ 41. Устойчивость движения в ламинарном пограничном слое
- •2) Эта аналогия указана а в. Тимофеевым (1979) и а а Андроновым и а л. Фабрикантом (1979); ниже мы следуем изложению а. В. Тимофеева.
- •8) При V"(y) шг 0 уравнение (41,2) вообще не имеет решений, удовлетворяющих необходимым граничным условиям.
- •§ 42. Логарифмический профиль скоростей
- •§ 43. Турбулентное течение в трубах
- •§ 44. Турбулентный пограничный слой
- •§ 45. Кризис сопротивления
- •§ 46. Хорошо обтекаемые тела
- •§ 47. Индуктивное сопротивление
- •§ 48. Подъёмная сила тонкого крыла
- •S2(£)-Citt) 6-«
- •Глава V
- •§ 49. Общее уравнение переноса тепла
- •§ 50. Теплопроводность в несжимаемой жидкости
- •§ 51. Теплопроводность в неограниченной среде
- •§ 52. Теплопроводность в ограниченной среде
- •§ 53. Закон подобия для теплопередачи
- •§ 54. Теплопередача в пограничном слое
- •ВгТт « - у«р-
- •§ 55. Нагревание тела в движущейся жидкости
- •§ 56. Свободная конвекция
- •§ 57. Конвективная неустойчивость неподвижной жидкости
- •§ 58. Уравнения гидродинамики для жидкой смеси
- •§ 59. Коэффициенты диффузии и термодиффузии
- •§ 60. Диффузия взвешенных в жидкости частиц
- •Глава VII
- •§ 61. Формула Лапласа
- •§ 62. Капиллярные волны
- •§ 63. Влияние адсорбированных пленок на движение жидкости
- •Глава VIII
- •§ 64. Звуковые волны
- •§ 66. Энергия и импульс звуковых волн
- •§ 66. Отражение и преломление звуковых волн
- •§ 67. Геометрическая акустика
- •§ 68. Распространение звука в движущейся среде
- •§ 69. Собственные колебания
- •§ 70. Сферические волны
- •§71. Цилиндрические волны
- •§ 72. Общее решение волнового уравнения
- •Ctjc42-(X-q2- (*/-г,)2'
- •§ 73. Боковая волна
- •§ 74. Излучение звука
- •§ 75. Возбуждение звука турбулентностью
- •V 1г' 4я j дхидх1к
- •§ 76. Принцип взаимности
- •§ 77. Распространение звука по трубке
- •§ 78. Рассеяние звука
- •§ 79. Поглощение звука
- •4. Определить дополнительное поглощение звука, распространяющегося в смеси двух веществ, связанное с диффузией (и. Г. Шапошников и 3. А Гольдберг, 1952).
- •§ 80. Акустическое течение
- •§ 81. Вторая вязкость
- •Глава IX
- •§ 82. Распространение возмущений в потоке сжимаемого газа
- •2) Во избежание недоразумений оговорим, что если перед обтекаемым телом возникает ударная волна, то эта область несколько увеличивается (см. § 122).
- •§ 83. Стационарный поток сжимаемого газа
- •§ 84. Поверхности разрыва
- •§ 85. Ударная адиабата
- •2) Такой выбор системы координат будет подразумеваться везде в этой главе, за исключением § 92.
- •§ 86. Ударные волны слабой интенсивности
- •§ 87] Направление изменения величин в ударной волне 463
- •§ 87. Направление изменения величин в ударной волне
- •§ 88. Эволюционность ударных волн
- •§ 89. Ударные волны в политропном газе
- •1. Получить формулу
- •§ 90. Гофрировочная неустойчивость ударных волн
- •2) Сравните с аналогичной ситуацией для тангенциальных разрывов — задача 2 § 84.
- •1) Эта неустойчивость тоже была указана с. П. Дьяковым (1954); правильное значение нижней границы в (90,17) найдено в. М. Конторовичем (1957).
- •§ 91. Распространение ударной волны по трубе
- •§ 92. Косая ударная волна
- •§ 93. Ширина ударных волн
- •§ 94. Ударные волны в релаксирующей среде
- •§ 96. Слабые разрывы
- •Глава X
- •§ 97. Истечение газа через сопло
- •§ 98. Вязкое движение сжимаемого газа по трубе
- •§ 99. Одномерное автомодельное движение
- •5. Определить движение в изотермической автомодельной волне разрежения.
- •§ 100. Разрывы в начальных условиях
- •§ 101. Одномерные бегущие волны
- •§ 102. Образование разрывов в звуковой волне
- •§ 103. Характеристики
- •§ 104. Инварианты Римана
- •§ 105. Произвольное одномерное движение сжимаемого газа
- •§ 106. Задача о сильном взрыве
- •§ 107. Сходящаяся сферическая ударная волна
- •2) Эта задача была рассмотрена независимо Гудерлеем (о. Guderleu, 1942) и л. Д. Ландау и к. П. Станюковичем (1944, опубликовано в 1955).
- •§ 108. Теория «мелкой воды»
- •Глава XI
- •§ 109. Волна разрежения
- •§ 111. Пересечение ударных волн с твердой поверхностью
- •§ 112. Сверхзвуковое обтекание угла
- •§ 113. Обтекание конического острия
- •Глава XII
- •§ 114. Потенциальное движение сжимаемого газа
- •§ 115. Стационарные простые волны
- •§ 116. Уравнение Чаплыгина (общая задача
- •§ 117. Характеристики плоского стационарного течения
- •§ 118. Уравнение Эйлера — Трикоми. Переход через звуковую скорость
- •§1191 Решение уравнения эйлера —трикоми 619
- •§ 119. Решения уравнения Эйлера — Трикоми вблизи неособых точек звуковой поверхности
- •§ 120. Обтекание со звуковой скоростью
- •§ 121. Отражение слабого разрыва от звуковой линии
- •Глава XIII
- •§ 122. Образование ударных воли при сверхзвуковом обтекании тел
- •§ 123. Сверхзвуковое обтекание заостренного тела
- •§ 124. Дозвуковое обтекание тонкого крыла
- •§ 125. Сверхзвуковое обтекание крыла
- •§ 126. Околозвуковой закон подобия
- •§ 127. Гиперзвуковой закон подобия
- •Глава XIV
- •§ 128. Медленное горение
- •§ 129. Детонация
- •§ 130. Распространение детонационной волны
- •§ 131. Соотношение между различными режимами горения
- •§ 132. Конденсационные скачки
- •Глава XV
- •§ 133. Тензор энергии-импульса жидкости
- •§ 134. Релятивистские гидродинамические уравнения
- •§ 135. Ударные волны в релятивистской гидродинамике
- •§ 136. Релятивистские уравнения движения вязкой и теплопроводной среды
- •§ 137. Основные свойства сверхтекучей жидкости
- •§ 138. Термомеханический эффект
- •§ 139. Уравнения гидродинамики сверхтекучей жидкости
- •§ 140. Диссипативные процессы в сверхтекучей жидкости
- •§ 141. Распространение звука в сверхтекучей жидкости
§ 46. Хорошо обтекаемые тела
Можно поставить вопрос о том, какова должна быть форма тела (при заданной, например, площади его сечения) для того, чтобы оно испытывало при движении в жидкости по возможности малое сопротивление. Из всего предыдущего ясно, что для этого во всяком случае необходимо достичь по возможности более позднего отрыва: отрыв должен произойти поближе к заднему концу тела так, чтобы турбулентный след был как можно более узким. Мы уже знаем, что возникновение отрыва облегчается наличием быстрого возрастания давления вдоль обтекаемого тела вниз по течению Поэтому необходимо придать телу такую форму, чтобы изменение давления вдоль него, — в той области, где давление возрастает, происходило по возможности медленно и плавно. Этого можно достичь приданием телу удлиненной (в направлении обтекания) формы, причем оно плавно заостряется в направлении обтекания так, что стекающие с разных сторон поверхности тела потоки как бы плавно смыкаются без того, чтобы им пришлось где-либо обтекать какие-нибудь углы или же сильно поворачивать по отношению к направлению набегающего потока. Спереди же тело должно быть закруглено; при наличии здесь угла скорость жидкости на его краю обратилась бы в бесконечность (см. задачу 6 § 10), вслед за чем произошли бы сильное возрастание давления вниз по течению и неизбежный отрыв.
Всем этим требованиям в высокой степени удовлетворяют формы типа, изображенного на рис. 36. Изображенный на ниж-
При обтекании хорошо обтекаемого крыла, наклоненного под малым углом к направлению потока (а на рис. 36, так называемый угол атаки), развивается большая подъемная сила Fy, при этом сопротивление Fx остается малым, и в результате отношение Fy/Fx может достичь больших значений (порядка 10—100). Так продолжается, однако, лишь до тех пор, пока угол атаки не сделается слишком большим (обычно ~10). После этого сопротивление начинает очень быстро возрастать, а подъемная сила падать. Это явление обусловливается тем, что при больших углах атаки тело перестает удовлетворять условиям хорошей обтекаемости: место отрыва сильно смещается по поверхности тела по направлению к его переднему краю, в результате чего след делается значительно более широким. Надо иметь в виду, что в предельном случае тела очень малой толщины, т. е. плоской пластинки, хорошее обтекание имеет место только при очень малом угле атаки; отрыв происходит на переднем крае пластинки уже при малых углах ее наклона к направлению потока.
Угол атаки а отсчитывается, по определению, от того положения крыла, при котором подъемная сила равна нулю. При малых углах атаки подъемную силу можно разложить в ряд по степеням а. Ограничиваясь первым членом разложения, мы можем считать силу Fy пропорциональной а. Далее, по тем же соображениям размерности, как и для силы сопротивления, подъемная сила должна быть пропорциональна pU2. Введя также длину размаха 1г крыла, можно написать:
Fy = const • pU2alxl2, (46,1)
i
где const — численная постоянная, зависящая только от формы крыла и не зависящая, в частности, от угла атаки. Для крыльев очень большого размаха можно считать подъемную силу пропорциональной размаху; в этом случае const зависит только от формы профиля поперечного сечения крыла.
Вместо подъемной силы крыла часто пользуются так называемым коэффициентом подъемной силы, определяемым как
Для крыльев очень большого размаха согласно сказанному выше он пропорционален углу атаки и не зависит ни от скорости движения, ни от размаха крыла:
Су = const • а. (46,3)
Для вычисления подъемной силы хорошо обтекаемого крыла с помощью формулы Жуковского необходимо определить циркуляцию скорости Г. Это делается следующим образом. Везде, кроме области следа, движение потенциально. В данном же случае след очень тонок и занимает на поверхности крыла лишь очень небольшую область вблизи его задней заостренной кромки. Поэтому для определения распределения скоростей (а с ним и циркуляции Г) можно решать задачу о потенциальном обтекании крыла идеальной жидкостью. Наличие следа учитывается при этом тем, что от острой задней кромки крыла отходит поверхность касательного разрыва, на которой потенциал испытывает скачок ф2 — <Pi = Г. Как было уже показано в § 38, на этой поверхности испытывает скачок также и производная dcp/dz, а производные ду/дх и ду/ду непрерывны. Для крыла конечного размаха поставленная таким образом задача имеет однозначное решение. Нахождение точного решения, однако, весьма сложно.
Если крыло обладает очень большим размахом (и постоянным вдоль размаха сечением), то, рассматривая его как бесконечно длинное вдоль оси г, можно считать движение жидкости плоским (в плоскости х, у). Из соображений симметрии ясно, что при этом скорость Vz — dy/dz в направлении размаха будет вообще равной нулю. В этом случае, следовательно, мы должны искать решение, в котором испытывает скачок только сам потенциал при непрерывных его производных; другими словами, поверхность касательного разрыва вообще отсутствует, и мы имеем дело просто с неоднозначной функцией ц>(х,у), принимающей конечное приращение Г при обходе по замкнутому кон-
туру, охватывающему обтекаемый профиль. В таком виде, однако, задача о плоском обтекании не однозначна, так как допускает решение при произвольном, заранее заданном скачке потенциала. Для получения однозначного ответа необходимо потребовать выполнения дополнительного условия (С. А. Чаплыгин, 1909)
Это условие заключается в требовании, чтобы скорость жидкости не обращалась в бесконечность на острой задней кромке крыла; напомним в этой связи, что при огибании угла идеальной жидкостью скорость в вершине угла обращается, вообще говоря, в бесконечность по степенному закону (задача 6 § 10). Можно сказать, что поставленное условие означает, что струи, стекающие с обеих сторон крыла, должны плавно смыкаться без того, чтобы поворачивать вокруг острого угла. Естественно, что при выполнении этого условия решение задачи о потенциальном обтекании приведет к картине, наиболее близкой к истинной, при которой скорость везде конечна, а отрыв происходит лишь у самой задней кромки. Решение становится после этого вполне однозначным и, в частности, определяется и нужная для вычисления подъемной силы циркуляция Г.