
- •§ 1. Уравнение непрерывности
- •§ Pvrff,
- •§ 2. Уравнение Эйлера
- •§ 3. Гидростатика
- •§ 4. Условие отсутствия конвекции
- •§ 5. Уравнение Бернулли
- •§ 6. Поток энергии
- •§ 7. Поток импульса
- •§ 8. Сохранение циркуляции скорости
- •§ 9. Потенциальное движение
- •§ 10. Несжимаемая жидкость
- •§ 12. Гравитационные волны
- •§ 13. Внутренние волны в несжимаемой жидкости
- •§ 14. Волны во вращающейся жидкости
- •Глава II
- •§ 15. Уравнения движения вязкой жидкости
- •§ 16. Диссипация энергии в несжимаемой жидкости
- •§17. Течение по трубе
- •§ 18. Движение жидкости между вращающимися цилиндрами
- •§ 19. Закон подобия
- •§ 20. Течение при малых числах Рейнольдса
- •§ 21. Ламинарный след
- •§ 22. Вязкость суспензий
- •§ 23. Точные решения уравнений движения вязкой жидкости
- •§ 24. Колебательное движение в вязкой жидкости
- •§ 25. Затухание гравитационных волн
- •Глава III
- •§ 26. Устойчивость стационарного движения жидкости
- •§ 27. Устойчивость вращательного движения жидкости
- •§ 29. Неустойчивость тангенциальных разрывов
- •§ 30. Квазипериодическое движение и синхронизация частот3)
- •§ 31. Странный аттрактор
- •§ 32. Переход к турбулентности путем удвоения периодов
- •§ 33. Развитая турбулентность
- •§ 34. Корреляционные функции скоростей
- •§ 35. Турбулентная область и явление отрыва
- •§ 36. Турбулентная струя
- •§ 37. Турбулентный след
- •§ 38. Теорема Жуковского
- •Глава IV
- •§ 39. Ламинарный пограничный слой
- •1. Определить толщину пограничного слоя вблизи критической точки (см. § 10) на обтекаемом жидкостью теле.
- •2. Определить движение в пограничном слое при конфузорном (см. § 23) течении между двумя пересекающимися плоскостями (к.. Pohlhausen, 1921).
- •§ 41. Устойчивость движения в ламинарном пограничном слое
- •2) Эта аналогия указана а в. Тимофеевым (1979) и а а Андроновым и а л. Фабрикантом (1979); ниже мы следуем изложению а. В. Тимофеева.
- •8) При V"(y) шг 0 уравнение (41,2) вообще не имеет решений, удовлетворяющих необходимым граничным условиям.
- •§ 42. Логарифмический профиль скоростей
- •§ 43. Турбулентное течение в трубах
- •§ 44. Турбулентный пограничный слой
- •§ 45. Кризис сопротивления
- •§ 46. Хорошо обтекаемые тела
- •§ 47. Индуктивное сопротивление
- •§ 48. Подъёмная сила тонкого крыла
- •S2(£)-Citt) 6-«
- •Глава V
- •§ 49. Общее уравнение переноса тепла
- •§ 50. Теплопроводность в несжимаемой жидкости
- •§ 51. Теплопроводность в неограниченной среде
- •§ 52. Теплопроводность в ограниченной среде
- •§ 53. Закон подобия для теплопередачи
- •§ 54. Теплопередача в пограничном слое
- •ВгТт « - у«р-
- •§ 55. Нагревание тела в движущейся жидкости
- •§ 56. Свободная конвекция
- •§ 57. Конвективная неустойчивость неподвижной жидкости
- •§ 58. Уравнения гидродинамики для жидкой смеси
- •§ 59. Коэффициенты диффузии и термодиффузии
- •§ 60. Диффузия взвешенных в жидкости частиц
- •Глава VII
- •§ 61. Формула Лапласа
- •§ 62. Капиллярные волны
- •§ 63. Влияние адсорбированных пленок на движение жидкости
- •Глава VIII
- •§ 64. Звуковые волны
- •§ 66. Энергия и импульс звуковых волн
- •§ 66. Отражение и преломление звуковых волн
- •§ 67. Геометрическая акустика
- •§ 68. Распространение звука в движущейся среде
- •§ 69. Собственные колебания
- •§ 70. Сферические волны
- •§71. Цилиндрические волны
- •§ 72. Общее решение волнового уравнения
- •Ctjc42-(X-q2- (*/-г,)2'
- •§ 73. Боковая волна
- •§ 74. Излучение звука
- •§ 75. Возбуждение звука турбулентностью
- •V 1г' 4я j дхидх1к
- •§ 76. Принцип взаимности
- •§ 77. Распространение звука по трубке
- •§ 78. Рассеяние звука
- •§ 79. Поглощение звука
- •4. Определить дополнительное поглощение звука, распространяющегося в смеси двух веществ, связанное с диффузией (и. Г. Шапошников и 3. А Гольдберг, 1952).
- •§ 80. Акустическое течение
- •§ 81. Вторая вязкость
- •Глава IX
- •§ 82. Распространение возмущений в потоке сжимаемого газа
- •2) Во избежание недоразумений оговорим, что если перед обтекаемым телом возникает ударная волна, то эта область несколько увеличивается (см. § 122).
- •§ 83. Стационарный поток сжимаемого газа
- •§ 84. Поверхности разрыва
- •§ 85. Ударная адиабата
- •2) Такой выбор системы координат будет подразумеваться везде в этой главе, за исключением § 92.
- •§ 86. Ударные волны слабой интенсивности
- •§ 87] Направление изменения величин в ударной волне 463
- •§ 87. Направление изменения величин в ударной волне
- •§ 88. Эволюционность ударных волн
- •§ 89. Ударные волны в политропном газе
- •1. Получить формулу
- •§ 90. Гофрировочная неустойчивость ударных волн
- •2) Сравните с аналогичной ситуацией для тангенциальных разрывов — задача 2 § 84.
- •1) Эта неустойчивость тоже была указана с. П. Дьяковым (1954); правильное значение нижней границы в (90,17) найдено в. М. Конторовичем (1957).
- •§ 91. Распространение ударной волны по трубе
- •§ 92. Косая ударная волна
- •§ 93. Ширина ударных волн
- •§ 94. Ударные волны в релаксирующей среде
- •§ 96. Слабые разрывы
- •Глава X
- •§ 97. Истечение газа через сопло
- •§ 98. Вязкое движение сжимаемого газа по трубе
- •§ 99. Одномерное автомодельное движение
- •5. Определить движение в изотермической автомодельной волне разрежения.
- •§ 100. Разрывы в начальных условиях
- •§ 101. Одномерные бегущие волны
- •§ 102. Образование разрывов в звуковой волне
- •§ 103. Характеристики
- •§ 104. Инварианты Римана
- •§ 105. Произвольное одномерное движение сжимаемого газа
- •§ 106. Задача о сильном взрыве
- •§ 107. Сходящаяся сферическая ударная волна
- •2) Эта задача была рассмотрена независимо Гудерлеем (о. Guderleu, 1942) и л. Д. Ландау и к. П. Станюковичем (1944, опубликовано в 1955).
- •§ 108. Теория «мелкой воды»
- •Глава XI
- •§ 109. Волна разрежения
- •§ 111. Пересечение ударных волн с твердой поверхностью
- •§ 112. Сверхзвуковое обтекание угла
- •§ 113. Обтекание конического острия
- •Глава XII
- •§ 114. Потенциальное движение сжимаемого газа
- •§ 115. Стационарные простые волны
- •§ 116. Уравнение Чаплыгина (общая задача
- •§ 117. Характеристики плоского стационарного течения
- •§ 118. Уравнение Эйлера — Трикоми. Переход через звуковую скорость
- •§1191 Решение уравнения эйлера —трикоми 619
- •§ 119. Решения уравнения Эйлера — Трикоми вблизи неособых точек звуковой поверхности
- •§ 120. Обтекание со звуковой скоростью
- •§ 121. Отражение слабого разрыва от звуковой линии
- •Глава XIII
- •§ 122. Образование ударных воли при сверхзвуковом обтекании тел
- •§ 123. Сверхзвуковое обтекание заостренного тела
- •§ 124. Дозвуковое обтекание тонкого крыла
- •§ 125. Сверхзвуковое обтекание крыла
- •§ 126. Околозвуковой закон подобия
- •§ 127. Гиперзвуковой закон подобия
- •Глава XIV
- •§ 128. Медленное горение
- •§ 129. Детонация
- •§ 130. Распространение детонационной волны
- •§ 131. Соотношение между различными режимами горения
- •§ 132. Конденсационные скачки
- •Глава XV
- •§ 133. Тензор энергии-импульса жидкости
- •§ 134. Релятивистские гидродинамические уравнения
- •§ 135. Ударные волны в релятивистской гидродинамике
- •§ 136. Релятивистские уравнения движения вязкой и теплопроводной среды
- •§ 137. Основные свойства сверхтекучей жидкости
- •§ 138. Термомеханический эффект
- •§ 139. Уравнения гидродинамики сверхтекучей жидкости
- •§ 140. Диссипативные процессы в сверхтекучей жидкости
- •§ 141. Распространение звука в сверхтекучей жидкости
§ 45. Кризис сопротивления
Из полученных в последних параграфах результатов можно сделать существенные заключения о законе сопротивления при больших числах Рейнольдса, т. е. о зависимости действующей на обтекаемое тело силы сопротивления от R при больших значениях последнего.
Картина обтекания при больших R (о которых только и идет речь ниже) выглядит, как уже говорилось, следующим образом. Во всем основном объеме жидкости (т. е. везде, за исключением пограничного слоя, которым мы здесь не интересуемся) жидкость может рассматриваться как идеальная, причем ее движение является потенциальным везде, кроме области турбулентного следа. Размеры — ширина — следа зависят от положения линии отрыва на поверхности обтекаемого тела. При этом существенно, что хотя это положение и определяется свойствами пограничного слоя, но в результате оказывается, как было отмечено в § 40, не зависящим от числа Рейнольдса. Таким образом, мы можем сказать, что вся картина обтекания при больших числах Рейнольдса практически не зависит от вязкости, т. е., другими
словами, от R (до тех пор, пока пограничный слой остается ламинарным; см. ниже).
Отсюда следует, что и сила сопротивления не может зависеть от вязкости. В нашем распоряжении остаются только три величины: скорость U натекающего потока, плотность жидкости р и размеры тела I. Из них можно составить всего лишь одну величину с размерностью силы; pl!2l2. Вместо квадрата линейных размеров тела введем, как это обычно делают, пропорциональную ему площадь 5 поперечного (по отношению к направлению обтекания) сечения тела и напишем:
F = const-p(/2S, (45,1)
где const — численная постоянная, зависящая только от формы тела. Таким образом, сила сопротивления должна быть (при больших R) пропорциональна площади сечения тела и квадрату скорости обтекания. Напомним для сравнения, что при совсем малых R(R<1) сопротивление было пропорционально первой степени линейных размеров тела и первой степени скорости (F ~ vplU; см. § 20)1).
Обычно, как уже говорилось, вместо силы сопротивления F рассматривают коэффициент сопротивления С, определяемый как
С= F
С является безразмерной величиной и может зависеть только от R. Формула (45,1) напишется в виде
С = const, (45,2)
т. е. коэффициент сопротивления зависит только от формы тела.
Такой ход силы сопротивления не может, однако, продолжаться до сколь угодно больших чисел Рейнольдса. Дело в том, что при достаточно больших R ламинарный пограничный слой (на поверхности тела до линии отрыва) делается неустойчивым и турбулизуется. При этом турбулизуется не весь пограничный слой, а лишь некоторая его часть. Вся поверхность тела может быть разделена, таким образом, на три части: на передней имеется ламинарный пограничный слой, затем идет область турбулентного слоя и, наконец, область за линией отрыва.
Турбулизация пограничного слоя существенно сказывается на всей картине течения в основном потоке: она приводит к заметному смещению линии отрыва вниз по течению жидкости, так что турбулентный след за телом сужается (как это изображено
') Своеобразный случай, когда сопротивление остается пропорциональным первой степени скорости при больших значениях R, — обтекание пузырька газа; см. задачу к этому параграфу.
схематически на рис. 33; область следа заштрихована)1). Сужение турбулентного следа приводит к уменьшению силы сопротивления. Таким образом, турбулизация пограничного слоя при больших числах Рейнольдса сопровождается падением коэффициента сопротивления. Коэффициент сопротивления падает в несколько раз в сравнительно узком интервале чисел Рейнольдса (в области R, равных нескольким 105). Это явление называется
60
3
1,5
1,0
0,6
0,3
20
с х- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
г- |
|
|
|
|
|
|
|
10"
Рис. 34
кризисом сопротивления. Уменьшение коэффициента сопротивления настолько значительно, что само сопротивление, которое при постоянном С должно возрастать пропорционально квадрату скорости, в этой области чисел Рейнольдса Даже убывает с возрастанием скорости2).
')
Так, при поперечном обтекании длинного
цилиндра турбулизация пограничного
слоя сдвигает положение точки отрыва
от 95 до 60° (угвл на окружности сечения
цилиндра отсчитывается от направления
обтекания).
2)
Отметим, что первое возникновение
нестационарности при обтекании шара
(при R
порядка
нескольких десятков) не сопровождается
скачкообразным изменением силы
сопротивления. Это связано с
непрерывностью-перехода при мягком
самовозбуждении. Изменение характера
течения могло бы
проявиться
лишь в появлении излома на кривой C(R),
На
рис. 34 и 35 приведен экспериментально
найденный график зависимости
коэффициента сопротивления*от числа
Рейнольдса R
=
Ud/v
для
шара диаметра d
(на
рис. 34 — в логарифмическом, а на рис.
35 — в обыкновенном масштабе). При самых
малых R
(R «С
1) коэффициент сопротивления падает по
закону C
= 24/R
(формула
Стокса). Падение С продолжается затем
более медленно вплоть до R
«
5-Ю3,
где С
достигает
минимума, вслед за чем несколько
повышается. В области чисел Рейнольдса
2-Ю4—
2-Ю5
имеет место закон (45,2), т. е. С
практически
остается постоянным. При R«2v3'10s
наступает
кризис сопротивления, причем
коэффициент сопротивления падает
примерно в 4—5 раз.
Для сравнения приведем пример обтекания, при котором не происходит явления кризиса. Рассмотрим обтекание плоского диска в направлении, перпендикулярном к его плоскости. Место отрыва в этом случае заранее очевидно из чисто геометрических соображений, — ясно, что отрыв произойдет по краю диска и в дальнейшем уже никуда не будет смещаться. Поэтому при увеличении R коэффициент сопротивления диска остается постоянным, не обнаруживая кризиса.
Следует иметь в виду, что при тех больших скоростях, когда наступает кризис сопротивления, может уже стать заметным влияние сжимаемости жидкости. Параметром, характеризующим степень этого влияния, является число М = U/c, где с — скорость звука; жидкость можно рассматривать как несжимаемую, если М< 1 (§ 10). Поскольку из двух чисел М и R лишь одно содержит размеры тела, то эти числа могут меняться независимо друг от друга.
Экспериментальные данные свидетельствуют о том, что ежи- • маемость оказывает в общем стабилизующее влияние на движение в ламинарном пограничном слое. При возрастании числа М увеличивается критическое значепие R, при котором происходит турбулизация пограничного слоя. В связи с этим отодвигается также и наступление кризиса сопротивления. Так, для шара при изменении М от 0,3 до 0,7 кризис сопротивления ото-двигается примерно от R « 4-105 до 8-105.
Укажем также, что при увеличении М положение точки отрыва в ламинарном пограничном слое смещается вверх по течению — по направлению к переднему концу тела, что должно приводить к некоторому увеличению сопротивления.
Задача
Определить силу сопротивления, действующую на движущийся в жидкости газовый пузырек при больших числах Рейнольдса.
»„
=
-т,$-
dv2
2nR2 sin 9 dQ = — l2nr\RU\
дг
Отсюда видно, что искомая диссипативная сила сопротивления
F= l2nr\RU.
Область применимости этой формулы фактически невелика, так как при достаточном увеличении скорости пузырек теряет свою сферическую форму.