
- •§ 1. Уравнение непрерывности
- •§ Pvrff,
- •§ 2. Уравнение Эйлера
- •§ 3. Гидростатика
- •§ 4. Условие отсутствия конвекции
- •§ 5. Уравнение Бернулли
- •§ 6. Поток энергии
- •§ 7. Поток импульса
- •§ 8. Сохранение циркуляции скорости
- •§ 9. Потенциальное движение
- •§ 10. Несжимаемая жидкость
- •§ 12. Гравитационные волны
- •§ 13. Внутренние волны в несжимаемой жидкости
- •§ 14. Волны во вращающейся жидкости
- •Глава II
- •§ 15. Уравнения движения вязкой жидкости
- •§ 16. Диссипация энергии в несжимаемой жидкости
- •§17. Течение по трубе
- •§ 18. Движение жидкости между вращающимися цилиндрами
- •§ 19. Закон подобия
- •§ 20. Течение при малых числах Рейнольдса
- •§ 21. Ламинарный след
- •§ 22. Вязкость суспензий
- •§ 23. Точные решения уравнений движения вязкой жидкости
- •§ 24. Колебательное движение в вязкой жидкости
- •§ 25. Затухание гравитационных волн
- •Глава III
- •§ 26. Устойчивость стационарного движения жидкости
- •§ 27. Устойчивость вращательного движения жидкости
- •§ 29. Неустойчивость тангенциальных разрывов
- •§ 30. Квазипериодическое движение и синхронизация частот3)
- •§ 31. Странный аттрактор
- •§ 32. Переход к турбулентности путем удвоения периодов
- •§ 33. Развитая турбулентность
- •§ 34. Корреляционные функции скоростей
- •§ 35. Турбулентная область и явление отрыва
- •§ 36. Турбулентная струя
- •§ 37. Турбулентный след
- •§ 38. Теорема Жуковского
- •Глава IV
- •§ 39. Ламинарный пограничный слой
- •1. Определить толщину пограничного слоя вблизи критической точки (см. § 10) на обтекаемом жидкостью теле.
- •2. Определить движение в пограничном слое при конфузорном (см. § 23) течении между двумя пересекающимися плоскостями (к.. Pohlhausen, 1921).
- •§ 41. Устойчивость движения в ламинарном пограничном слое
- •2) Эта аналогия указана а в. Тимофеевым (1979) и а а Андроновым и а л. Фабрикантом (1979); ниже мы следуем изложению а. В. Тимофеева.
- •8) При V"(y) шг 0 уравнение (41,2) вообще не имеет решений, удовлетворяющих необходимым граничным условиям.
- •§ 42. Логарифмический профиль скоростей
- •§ 43. Турбулентное течение в трубах
- •§ 44. Турбулентный пограничный слой
- •§ 45. Кризис сопротивления
- •§ 46. Хорошо обтекаемые тела
- •§ 47. Индуктивное сопротивление
- •§ 48. Подъёмная сила тонкого крыла
- •S2(£)-Citt) 6-«
- •Глава V
- •§ 49. Общее уравнение переноса тепла
- •§ 50. Теплопроводность в несжимаемой жидкости
- •§ 51. Теплопроводность в неограниченной среде
- •§ 52. Теплопроводность в ограниченной среде
- •§ 53. Закон подобия для теплопередачи
- •§ 54. Теплопередача в пограничном слое
- •ВгТт « - у«р-
- •§ 55. Нагревание тела в движущейся жидкости
- •§ 56. Свободная конвекция
- •§ 57. Конвективная неустойчивость неподвижной жидкости
- •§ 58. Уравнения гидродинамики для жидкой смеси
- •§ 59. Коэффициенты диффузии и термодиффузии
- •§ 60. Диффузия взвешенных в жидкости частиц
- •Глава VII
- •§ 61. Формула Лапласа
- •§ 62. Капиллярные волны
- •§ 63. Влияние адсорбированных пленок на движение жидкости
- •Глава VIII
- •§ 64. Звуковые волны
- •§ 66. Энергия и импульс звуковых волн
- •§ 66. Отражение и преломление звуковых волн
- •§ 67. Геометрическая акустика
- •§ 68. Распространение звука в движущейся среде
- •§ 69. Собственные колебания
- •§ 70. Сферические волны
- •§71. Цилиндрические волны
- •§ 72. Общее решение волнового уравнения
- •Ctjc42-(X-q2- (*/-г,)2'
- •§ 73. Боковая волна
- •§ 74. Излучение звука
- •§ 75. Возбуждение звука турбулентностью
- •V 1г' 4я j дхидх1к
- •§ 76. Принцип взаимности
- •§ 77. Распространение звука по трубке
- •§ 78. Рассеяние звука
- •§ 79. Поглощение звука
- •4. Определить дополнительное поглощение звука, распространяющегося в смеси двух веществ, связанное с диффузией (и. Г. Шапошников и 3. А Гольдберг, 1952).
- •§ 80. Акустическое течение
- •§ 81. Вторая вязкость
- •Глава IX
- •§ 82. Распространение возмущений в потоке сжимаемого газа
- •2) Во избежание недоразумений оговорим, что если перед обтекаемым телом возникает ударная волна, то эта область несколько увеличивается (см. § 122).
- •§ 83. Стационарный поток сжимаемого газа
- •§ 84. Поверхности разрыва
- •§ 85. Ударная адиабата
- •2) Такой выбор системы координат будет подразумеваться везде в этой главе, за исключением § 92.
- •§ 86. Ударные волны слабой интенсивности
- •§ 87] Направление изменения величин в ударной волне 463
- •§ 87. Направление изменения величин в ударной волне
- •§ 88. Эволюционность ударных волн
- •§ 89. Ударные волны в политропном газе
- •1. Получить формулу
- •§ 90. Гофрировочная неустойчивость ударных волн
- •2) Сравните с аналогичной ситуацией для тангенциальных разрывов — задача 2 § 84.
- •1) Эта неустойчивость тоже была указана с. П. Дьяковым (1954); правильное значение нижней границы в (90,17) найдено в. М. Конторовичем (1957).
- •§ 91. Распространение ударной волны по трубе
- •§ 92. Косая ударная волна
- •§ 93. Ширина ударных волн
- •§ 94. Ударные волны в релаксирующей среде
- •§ 96. Слабые разрывы
- •Глава X
- •§ 97. Истечение газа через сопло
- •§ 98. Вязкое движение сжимаемого газа по трубе
- •§ 99. Одномерное автомодельное движение
- •5. Определить движение в изотермической автомодельной волне разрежения.
- •§ 100. Разрывы в начальных условиях
- •§ 101. Одномерные бегущие волны
- •§ 102. Образование разрывов в звуковой волне
- •§ 103. Характеристики
- •§ 104. Инварианты Римана
- •§ 105. Произвольное одномерное движение сжимаемого газа
- •§ 106. Задача о сильном взрыве
- •§ 107. Сходящаяся сферическая ударная волна
- •2) Эта задача была рассмотрена независимо Гудерлеем (о. Guderleu, 1942) и л. Д. Ландау и к. П. Станюковичем (1944, опубликовано в 1955).
- •§ 108. Теория «мелкой воды»
- •Глава XI
- •§ 109. Волна разрежения
- •§ 111. Пересечение ударных волн с твердой поверхностью
- •§ 112. Сверхзвуковое обтекание угла
- •§ 113. Обтекание конического острия
- •Глава XII
- •§ 114. Потенциальное движение сжимаемого газа
- •§ 115. Стационарные простые волны
- •§ 116. Уравнение Чаплыгина (общая задача
- •§ 117. Характеристики плоского стационарного течения
- •§ 118. Уравнение Эйлера — Трикоми. Переход через звуковую скорость
- •§1191 Решение уравнения эйлера —трикоми 619
- •§ 119. Решения уравнения Эйлера — Трикоми вблизи неособых точек звуковой поверхности
- •§ 120. Обтекание со звуковой скоростью
- •§ 121. Отражение слабого разрыва от звуковой линии
- •Глава XIII
- •§ 122. Образование ударных воли при сверхзвуковом обтекании тел
- •§ 123. Сверхзвуковое обтекание заостренного тела
- •§ 124. Дозвуковое обтекание тонкого крыла
- •§ 125. Сверхзвуковое обтекание крыла
- •§ 126. Околозвуковой закон подобия
- •§ 127. Гиперзвуковой закон подобия
- •Глава XIV
- •§ 128. Медленное горение
- •§ 129. Детонация
- •§ 130. Распространение детонационной волны
- •§ 131. Соотношение между различными режимами горения
- •§ 132. Конденсационные скачки
- •Глава XV
- •§ 133. Тензор энергии-импульса жидкости
- •§ 134. Релятивистские гидродинамические уравнения
- •§ 135. Ударные волны в релятивистской гидродинамике
- •§ 136. Релятивистские уравнения движения вязкой и теплопроводной среды
- •§ 137. Основные свойства сверхтекучей жидкости
- •§ 138. Термомеханический эффект
- •§ 139. Уравнения гидродинамики сверхтекучей жидкости
- •§ 140. Диссипативные процессы в сверхтекучей жидкости
- •§ 141. Распространение звука в сверхтекучей жидкости
§ 44. Турбулентный пограничный слой
Тот факт, что мы получили для плоско-параллельного турбулентного потока логарифмический закон распределения скоростей формально во всем пространстве, связан с тем, что рассматривалось течение вдоль стенки, площадь которой бесконечна. При течении же вдоль поверхности реальных конечных тел логарифмическим профилем обладает лишь движение на небольших расстояниях от поверхности — в пограничном слое.
Толщина пограничного слоя растет вниз по течению вдоль обтекаемой поверхности (закон этого возрастания будет найден ниже). Это объясняет, почему при течении по трубе логарифмический профиль имеет место вдоль всего сечения трубы. Толщина пограничного слоя у стенки трубы растет, начиная от входа в трубу. Уже на некотором конечном расстоянии от входа пограничный слой как бы заполняет собой все сечение трубы. Поэтому если рассматривать трубу как достаточно длинную и не интересоваться ее начальным участком, то течение во всем ее объеме будет того же типа, как. и в турбулентном пограничном слое. Напомним, что аналогичное положение имеет место и для ламинарного течения по трубе. Оно всегда описывается формулой (17,9); роль вязкости в нем проявляется на всех расстояниях от стенки и никогда не бывает ограничена тонким пристеночным слоем жидкости.
Падение средней скорости как в турбулентном, так и в ламинарном пограничном слое, обусловливается в конечном итоге вязкостью жидкости. Однако влияние вязкости проявляется в турбулентном пограничном слое очень своеобразно. Самый ход изменения средней скорости в слое не зависит непосредственно от вязкости; вязкость входит в выражение для градиента скорости только в вязком подслое. Общая же толщина пограничного слоя определяется вязкостью и обращается в нуль вместе с ней (см. ниже). Если бы вязкость была в точности равна нулю, то никакого пограничного слоя вовсе не было бы.
Применим полученные в предыдущем параграфе результаты к турбулентному пограничному слою, образующемуся при обтекании тонкой плоской пластинки, — таком же, какое было рассмотрено в § 39 для ламинарного течения. На границе турбулентного слоя скорость жидкости почти равна скорости U основного потока. С другой стороны, для определения этой скорости на границе мы можем (с логарифмической точностью) воспользоваться формулой (42,7), подставив в нее вместо у толщину пограничного слоя б1). Сравнив оба выражения, получим:
£/ = ^-lni£. (44,1)
Здесь U играет роль постоянного параметра; толщина же б меняется вдоль пластинки, а вместе с ней является, следовательно,
') Фактически логарифмический профиль наблюдается не на всей тол-' щине пограничного слоя. Последние 20—25 % набора скорости на его наружной стороне происходят быстрее, чем по логарифмическому закону. Эти отклонения связаны, по-видимому, с нерегулярными колебаниями границы слоя (ср. сказанное в конце § 35 о границах турбулентных областей).
медленно меняющейся функцией от л; и величина и«. Для определения этих функций формула (44,1) недостаточна; необходимо получить еще какое-нибудь соотношение, которое бы связывало v* и б с х.
Для этого воспользуемся теми же соображениями, с помощью которых была получена формула (37,3) для ширины турбулентного следа. Как и там, производная db/dx должна быть порядка величины отношения скорости вдоль оси у на границе слоя к скорости вдоль оси х на той же границе. Вторая из них — порядка U, что же касается поперечной скорости, то она обязана пульсационному движению и потому — порядка о*. Таким образом,
db v.
откуда
6--^. (44,2)
Формулы (44,1) и (44,2) определяют вместе зависимость и» и б от расстояния х1). Эта зависимость, однако, не может быть написана в явном виде. Ниже мы выразим 6 через некоторую вспомогательную величину. Но поскольку и» есть медленно меняющаяся функция от х, то уже из (44,2) видно, что толщина слоя меняется в основном пропорционально х. Напомним, что толщина ламинарного пограничного слоя растет как х1/2, т. е. медленнее, чем в турбулентном слое.
Определим зависимость от х силы трения а, действующей на единицу площади поверхности пластинки. Эта зависимость определяется двумя формулами:
v v2x a = pv2„ t/^-Mn-^.
Вторая из них получается подстановкой (44,2) в (44,1) и обладает логарифмической точностью. Введем коэффициент сопротивления с (отнесенный к единице площади поверхности пластинки), определяемый как безразмерное отношение
Тогда, исключая у» из двух написанных уравнений, получим следующее уравнение, определяющее (с логарифмической точностью) в неявном виде зависимость с от х:
л^=\псЪх, R, = -^-. (44,4)
') Строго говоря, расстояние д: должно отсчитываться примерно от места перехода ламинарного слоя в турбулентный.
Определяемый этой формулой коэффициент сопротивления с является медленно убывающей функцией расстояния х.
Через эту функцию можно выразить толщину пограничного слоя. Имеем:
Подставив это в (44,2), находим:
б = const • jc Vе • (44,5)
Эмпирическое значение коэффициента в этой формуле — около 0,3.
Аналогичным образом можно получить формулы для турбулентного пограничного слоя на шероховатой поверхности. Согласно формуле (42,13), имеем теперь вместо (44,1):
и d
где d — размеры выступов шероховатости. Подставив сюда б из (44,2), получим:
и у. 111 Ud '
или, введя сюда коэффициент сопротивления (44,3):
'5T_,„£iL. (44,б)