
- •§ 1. Уравнение непрерывности
- •§ Pvrff,
- •§ 2. Уравнение Эйлера
- •§ 3. Гидростатика
- •§ 4. Условие отсутствия конвекции
- •§ 5. Уравнение Бернулли
- •§ 6. Поток энергии
- •§ 7. Поток импульса
- •§ 8. Сохранение циркуляции скорости
- •§ 9. Потенциальное движение
- •§ 10. Несжимаемая жидкость
- •§ 12. Гравитационные волны
- •§ 13. Внутренние волны в несжимаемой жидкости
- •§ 14. Волны во вращающейся жидкости
- •Глава II
- •§ 15. Уравнения движения вязкой жидкости
- •§ 16. Диссипация энергии в несжимаемой жидкости
- •§17. Течение по трубе
- •§ 18. Движение жидкости между вращающимися цилиндрами
- •§ 19. Закон подобия
- •§ 20. Течение при малых числах Рейнольдса
- •§ 21. Ламинарный след
- •§ 22. Вязкость суспензий
- •§ 23. Точные решения уравнений движения вязкой жидкости
- •§ 24. Колебательное движение в вязкой жидкости
- •§ 25. Затухание гравитационных волн
- •Глава III
- •§ 26. Устойчивость стационарного движения жидкости
- •§ 27. Устойчивость вращательного движения жидкости
- •§ 29. Неустойчивость тангенциальных разрывов
- •§ 30. Квазипериодическое движение и синхронизация частот3)
- •§ 31. Странный аттрактор
- •§ 32. Переход к турбулентности путем удвоения периодов
- •§ 33. Развитая турбулентность
- •§ 34. Корреляционные функции скоростей
- •§ 35. Турбулентная область и явление отрыва
- •§ 36. Турбулентная струя
- •§ 37. Турбулентный след
- •§ 38. Теорема Жуковского
- •Глава IV
- •§ 39. Ламинарный пограничный слой
- •1. Определить толщину пограничного слоя вблизи критической точки (см. § 10) на обтекаемом жидкостью теле.
- •2. Определить движение в пограничном слое при конфузорном (см. § 23) течении между двумя пересекающимися плоскостями (к.. Pohlhausen, 1921).
- •§ 41. Устойчивость движения в ламинарном пограничном слое
- •2) Эта аналогия указана а в. Тимофеевым (1979) и а а Андроновым и а л. Фабрикантом (1979); ниже мы следуем изложению а. В. Тимофеева.
- •8) При V"(y) шг 0 уравнение (41,2) вообще не имеет решений, удовлетворяющих необходимым граничным условиям.
- •§ 42. Логарифмический профиль скоростей
- •§ 43. Турбулентное течение в трубах
- •§ 44. Турбулентный пограничный слой
- •§ 45. Кризис сопротивления
- •§ 46. Хорошо обтекаемые тела
- •§ 47. Индуктивное сопротивление
- •§ 48. Подъёмная сила тонкого крыла
- •S2(£)-Citt) 6-«
- •Глава V
- •§ 49. Общее уравнение переноса тепла
- •§ 50. Теплопроводность в несжимаемой жидкости
- •§ 51. Теплопроводность в неограниченной среде
- •§ 52. Теплопроводность в ограниченной среде
- •§ 53. Закон подобия для теплопередачи
- •§ 54. Теплопередача в пограничном слое
- •ВгТт « - у«р-
- •§ 55. Нагревание тела в движущейся жидкости
- •§ 56. Свободная конвекция
- •§ 57. Конвективная неустойчивость неподвижной жидкости
- •§ 58. Уравнения гидродинамики для жидкой смеси
- •§ 59. Коэффициенты диффузии и термодиффузии
- •§ 60. Диффузия взвешенных в жидкости частиц
- •Глава VII
- •§ 61. Формула Лапласа
- •§ 62. Капиллярные волны
- •§ 63. Влияние адсорбированных пленок на движение жидкости
- •Глава VIII
- •§ 64. Звуковые волны
- •§ 66. Энергия и импульс звуковых волн
- •§ 66. Отражение и преломление звуковых волн
- •§ 67. Геометрическая акустика
- •§ 68. Распространение звука в движущейся среде
- •§ 69. Собственные колебания
- •§ 70. Сферические волны
- •§71. Цилиндрические волны
- •§ 72. Общее решение волнового уравнения
- •Ctjc42-(X-q2- (*/-г,)2'
- •§ 73. Боковая волна
- •§ 74. Излучение звука
- •§ 75. Возбуждение звука турбулентностью
- •V 1г' 4я j дхидх1к
- •§ 76. Принцип взаимности
- •§ 77. Распространение звука по трубке
- •§ 78. Рассеяние звука
- •§ 79. Поглощение звука
- •4. Определить дополнительное поглощение звука, распространяющегося в смеси двух веществ, связанное с диффузией (и. Г. Шапошников и 3. А Гольдберг, 1952).
- •§ 80. Акустическое течение
- •§ 81. Вторая вязкость
- •Глава IX
- •§ 82. Распространение возмущений в потоке сжимаемого газа
- •2) Во избежание недоразумений оговорим, что если перед обтекаемым телом возникает ударная волна, то эта область несколько увеличивается (см. § 122).
- •§ 83. Стационарный поток сжимаемого газа
- •§ 84. Поверхности разрыва
- •§ 85. Ударная адиабата
- •2) Такой выбор системы координат будет подразумеваться везде в этой главе, за исключением § 92.
- •§ 86. Ударные волны слабой интенсивности
- •§ 87] Направление изменения величин в ударной волне 463
- •§ 87. Направление изменения величин в ударной волне
- •§ 88. Эволюционность ударных волн
- •§ 89. Ударные волны в политропном газе
- •1. Получить формулу
- •§ 90. Гофрировочная неустойчивость ударных волн
- •2) Сравните с аналогичной ситуацией для тангенциальных разрывов — задача 2 § 84.
- •1) Эта неустойчивость тоже была указана с. П. Дьяковым (1954); правильное значение нижней границы в (90,17) найдено в. М. Конторовичем (1957).
- •§ 91. Распространение ударной волны по трубе
- •§ 92. Косая ударная волна
- •§ 93. Ширина ударных волн
- •§ 94. Ударные волны в релаксирующей среде
- •§ 96. Слабые разрывы
- •Глава X
- •§ 97. Истечение газа через сопло
- •§ 98. Вязкое движение сжимаемого газа по трубе
- •§ 99. Одномерное автомодельное движение
- •5. Определить движение в изотермической автомодельной волне разрежения.
- •§ 100. Разрывы в начальных условиях
- •§ 101. Одномерные бегущие волны
- •§ 102. Образование разрывов в звуковой волне
- •§ 103. Характеристики
- •§ 104. Инварианты Римана
- •§ 105. Произвольное одномерное движение сжимаемого газа
- •§ 106. Задача о сильном взрыве
- •§ 107. Сходящаяся сферическая ударная волна
- •2) Эта задача была рассмотрена независимо Гудерлеем (о. Guderleu, 1942) и л. Д. Ландау и к. П. Станюковичем (1944, опубликовано в 1955).
- •§ 108. Теория «мелкой воды»
- •Глава XI
- •§ 109. Волна разрежения
- •§ 111. Пересечение ударных волн с твердой поверхностью
- •§ 112. Сверхзвуковое обтекание угла
- •§ 113. Обтекание конического острия
- •Глава XII
- •§ 114. Потенциальное движение сжимаемого газа
- •§ 115. Стационарные простые волны
- •§ 116. Уравнение Чаплыгина (общая задача
- •§ 117. Характеристики плоского стационарного течения
- •§ 118. Уравнение Эйлера — Трикоми. Переход через звуковую скорость
- •§1191 Решение уравнения эйлера —трикоми 619
- •§ 119. Решения уравнения Эйлера — Трикоми вблизи неособых точек звуковой поверхности
- •§ 120. Обтекание со звуковой скоростью
- •§ 121. Отражение слабого разрыва от звуковой линии
- •Глава XIII
- •§ 122. Образование ударных воли при сверхзвуковом обтекании тел
- •§ 123. Сверхзвуковое обтекание заостренного тела
- •§ 124. Дозвуковое обтекание тонкого крыла
- •§ 125. Сверхзвуковое обтекание крыла
- •§ 126. Околозвуковой закон подобия
- •§ 127. Гиперзвуковой закон подобия
- •Глава XIV
- •§ 128. Медленное горение
- •§ 129. Детонация
- •§ 130. Распространение детонационной волны
- •§ 131. Соотношение между различными режимами горения
- •§ 132. Конденсационные скачки
- •Глава XV
- •§ 133. Тензор энергии-импульса жидкости
- •§ 134. Релятивистские гидродинамические уравнения
- •§ 135. Ударные волны в релятивистской гидродинамике
- •§ 136. Релятивистские уравнения движения вязкой и теплопроводной среды
- •§ 137. Основные свойства сверхтекучей жидкости
- •§ 138. Термомеханический эффект
- •§ 139. Уравнения гидродинамики сверхтекучей жидкости
- •§ 140. Диссипативные процессы в сверхтекучей жидкости
- •§ 141. Распространение звука в сверхтекучей жидкости
§ 43. Турбулентное течение в трубах
Применим теперь полученные результаты к турбулентному течению жидкости по трубе. Вблизи стенок трубы (на расстояниях, малых по сравнению с ее радиусом а) ее поверхность можно приближенно рассматривать как плоскую и распределение скоростей должно описываться формулой (42,7) или (42,8). Однако ввиду медленного изменения функции In у можно с логарифмической точностью применить формулу (42,7) и к средней скорости U течения жидкости в трубе, написав в этой формуле вместо у радиус а трубы:
t/-^lnib.. (43,1)
Под скоростью U мы будем подразумевать количество (объем) жидкости, протекающей в 1 с через сечение трубы, деленное на площадь этого сечения: U = Q/pna2.
Для того чтобы связать скорость U с поддерживающим течение перепадом давления Ар/1 (Ар — разность давлений на концах трубы с длиной /), замечаем следующее. Действующая на все сечение потока жидкости в трубе движущая сила есть па2Ар. Эта сила идет на преодоление трения о стенки. Поскольку отнесенная к единице площади стенки сила трения есть а = pv* то полная сила трения равна 2nalpv\. Приравнивая оба выражения, находим:
4^ = Р^1- (43,2)
Уравнения (43,1) и (43,2) определяют в параметрическом виде (параметром является и») связь скорости течения жидкости по трубе с перепадом давления в ней. Об этой связи говорят обычно как о законе сопротивления трубы. Выражая к» через Ар/1 из (43,2) и подставляя в (43,1), получаем закон сопротивления в виде уравнения
"-VH^vVlr7)- («л
Обычно в этой формуле вводят так называемый коэффициент сопротивления трубы, являющийся безразмерной величиной и определяющийся как отношение
^~UW' (43.4)
Зависимость X от безразмерного числа Рейнольдса R = 2aU/v определяется неявным образом уравнением
-j= = 0,88 In (RV^)- 0,85. (43,5)
Мы поставили здесь для и значение (42,3) и прибавили к логарифму эмпирическую численную постоянную1). Определяемый этой формулой коэффициент сопротивления является медленно убывающей функцией числа Рейнольдса. Для сравнения приведем закон сопротивления при ламинарном течении в трубе. Вводя в формулу (17,10) коэффициент сопротивления, получаем:
X = 64/R. (43,6)
При ламинарном течении коэффициент сопротивления падает с ростом числа Рейнольдса быстрее, чем при турбулентном течении.
')
Коэффициент перед логарифмом в этой
формуле взят в соответствии с
коэффициентом в формуле (42,8)
логарифмического профиля скоростей.
Только при таком условии эта формула
имеет теоретический смысл предельной
формулы для турбулентного течения при
достаточно больших значениях числа
Рейнольдса. Если же выбирать в формуле
(43,5) произвольным образом значение
обеих входящих в нее постоянных, то
она сможет играть роль лишь чисто
эмпирической формулы для зависимости
X
от
R.
В
таком случае, однако, нет никаких
оснований предпочитать ее любой другой,
более простой, эмпирической формуле,
достаточно хорошо описывающей
экспериментальные данные.
турбулентный пограничный слой
251
(практически тоже близкая к прямой) — турбулентному течению. Переход с первой на вторую происходит по мере увеличения числа Рейнольдса в момент турбулизации течения, который может наступить при различных значениях R в зависимости от конкретных условий течения (от степени «возмущенности» потока); в момент перехода коэффициент сопротивления резко возрастает.
Ркс. 32
Написанные выше формулы относятся к трубам с гладкими стенками. Аналогичные формулы для труб с сильно шероховатыми стенками получаются просто заменойv/v* на d (ср. (42,13)). Для закона сопротивления получим теперь вместо (43,3) формулу
^Vw'"f <43>7>
Под знаком логарифма стоит теперь постоянная величина, не содержащая перепада давления, как это было в (43,3). Мы ви- дим, что средняя скорость течения теперь просто пропорцио- нальна квадратному корню из градиента давления в трубе. Если ввести коэффициент сопротивления, то формула (43,7) примет вид 2 ^
Л = In2 (aid) = In2 (aid) ' (43,8)
т. е. Я — постоянная величина, не зависящая от числа Рейнольдса.