
- •§ 1. Уравнение непрерывности
- •§ Pvrff,
- •§ 2. Уравнение Эйлера
- •§ 3. Гидростатика
- •§ 4. Условие отсутствия конвекции
- •§ 5. Уравнение Бернулли
- •§ 6. Поток энергии
- •§ 7. Поток импульса
- •§ 8. Сохранение циркуляции скорости
- •§ 9. Потенциальное движение
- •§ 10. Несжимаемая жидкость
- •§ 12. Гравитационные волны
- •§ 13. Внутренние волны в несжимаемой жидкости
- •§ 14. Волны во вращающейся жидкости
- •Глава II
- •§ 15. Уравнения движения вязкой жидкости
- •§ 16. Диссипация энергии в несжимаемой жидкости
- •§17. Течение по трубе
- •§ 18. Движение жидкости между вращающимися цилиндрами
- •§ 19. Закон подобия
- •§ 20. Течение при малых числах Рейнольдса
- •§ 21. Ламинарный след
- •§ 22. Вязкость суспензий
- •§ 23. Точные решения уравнений движения вязкой жидкости
- •§ 24. Колебательное движение в вязкой жидкости
- •§ 25. Затухание гравитационных волн
- •Глава III
- •§ 26. Устойчивость стационарного движения жидкости
- •§ 27. Устойчивость вращательного движения жидкости
- •§ 29. Неустойчивость тангенциальных разрывов
- •§ 30. Квазипериодическое движение и синхронизация частот3)
- •§ 31. Странный аттрактор
- •§ 32. Переход к турбулентности путем удвоения периодов
- •§ 33. Развитая турбулентность
- •§ 34. Корреляционные функции скоростей
- •§ 35. Турбулентная область и явление отрыва
- •§ 36. Турбулентная струя
- •§ 37. Турбулентный след
- •§ 38. Теорема Жуковского
- •Глава IV
- •§ 39. Ламинарный пограничный слой
- •1. Определить толщину пограничного слоя вблизи критической точки (см. § 10) на обтекаемом жидкостью теле.
- •2. Определить движение в пограничном слое при конфузорном (см. § 23) течении между двумя пересекающимися плоскостями (к.. Pohlhausen, 1921).
- •§ 41. Устойчивость движения в ламинарном пограничном слое
- •2) Эта аналогия указана а в. Тимофеевым (1979) и а а Андроновым и а л. Фабрикантом (1979); ниже мы следуем изложению а. В. Тимофеева.
- •8) При V"(y) шг 0 уравнение (41,2) вообще не имеет решений, удовлетворяющих необходимым граничным условиям.
- •§ 42. Логарифмический профиль скоростей
- •§ 43. Турбулентное течение в трубах
- •§ 44. Турбулентный пограничный слой
- •§ 45. Кризис сопротивления
- •§ 46. Хорошо обтекаемые тела
- •§ 47. Индуктивное сопротивление
- •§ 48. Подъёмная сила тонкого крыла
- •S2(£)-Citt) 6-«
- •Глава V
- •§ 49. Общее уравнение переноса тепла
- •§ 50. Теплопроводность в несжимаемой жидкости
- •§ 51. Теплопроводность в неограниченной среде
- •§ 52. Теплопроводность в ограниченной среде
- •§ 53. Закон подобия для теплопередачи
- •§ 54. Теплопередача в пограничном слое
- •ВгТт « - у«р-
- •§ 55. Нагревание тела в движущейся жидкости
- •§ 56. Свободная конвекция
- •§ 57. Конвективная неустойчивость неподвижной жидкости
- •§ 58. Уравнения гидродинамики для жидкой смеси
- •§ 59. Коэффициенты диффузии и термодиффузии
- •§ 60. Диффузия взвешенных в жидкости частиц
- •Глава VII
- •§ 61. Формула Лапласа
- •§ 62. Капиллярные волны
- •§ 63. Влияние адсорбированных пленок на движение жидкости
- •Глава VIII
- •§ 64. Звуковые волны
- •§ 66. Энергия и импульс звуковых волн
- •§ 66. Отражение и преломление звуковых волн
- •§ 67. Геометрическая акустика
- •§ 68. Распространение звука в движущейся среде
- •§ 69. Собственные колебания
- •§ 70. Сферические волны
- •§71. Цилиндрические волны
- •§ 72. Общее решение волнового уравнения
- •Ctjc42-(X-q2- (*/-г,)2'
- •§ 73. Боковая волна
- •§ 74. Излучение звука
- •§ 75. Возбуждение звука турбулентностью
- •V 1г' 4я j дхидх1к
- •§ 76. Принцип взаимности
- •§ 77. Распространение звука по трубке
- •§ 78. Рассеяние звука
- •§ 79. Поглощение звука
- •4. Определить дополнительное поглощение звука, распространяющегося в смеси двух веществ, связанное с диффузией (и. Г. Шапошников и 3. А Гольдберг, 1952).
- •§ 80. Акустическое течение
- •§ 81. Вторая вязкость
- •Глава IX
- •§ 82. Распространение возмущений в потоке сжимаемого газа
- •2) Во избежание недоразумений оговорим, что если перед обтекаемым телом возникает ударная волна, то эта область несколько увеличивается (см. § 122).
- •§ 83. Стационарный поток сжимаемого газа
- •§ 84. Поверхности разрыва
- •§ 85. Ударная адиабата
- •2) Такой выбор системы координат будет подразумеваться везде в этой главе, за исключением § 92.
- •§ 86. Ударные волны слабой интенсивности
- •§ 87] Направление изменения величин в ударной волне 463
- •§ 87. Направление изменения величин в ударной волне
- •§ 88. Эволюционность ударных волн
- •§ 89. Ударные волны в политропном газе
- •1. Получить формулу
- •§ 90. Гофрировочная неустойчивость ударных волн
- •2) Сравните с аналогичной ситуацией для тангенциальных разрывов — задача 2 § 84.
- •1) Эта неустойчивость тоже была указана с. П. Дьяковым (1954); правильное значение нижней границы в (90,17) найдено в. М. Конторовичем (1957).
- •§ 91. Распространение ударной волны по трубе
- •§ 92. Косая ударная волна
- •§ 93. Ширина ударных волн
- •§ 94. Ударные волны в релаксирующей среде
- •§ 96. Слабые разрывы
- •Глава X
- •§ 97. Истечение газа через сопло
- •§ 98. Вязкое движение сжимаемого газа по трубе
- •§ 99. Одномерное автомодельное движение
- •5. Определить движение в изотермической автомодельной волне разрежения.
- •§ 100. Разрывы в начальных условиях
- •§ 101. Одномерные бегущие волны
- •§ 102. Образование разрывов в звуковой волне
- •§ 103. Характеристики
- •§ 104. Инварианты Римана
- •§ 105. Произвольное одномерное движение сжимаемого газа
- •§ 106. Задача о сильном взрыве
- •§ 107. Сходящаяся сферическая ударная волна
- •2) Эта задача была рассмотрена независимо Гудерлеем (о. Guderleu, 1942) и л. Д. Ландау и к. П. Станюковичем (1944, опубликовано в 1955).
- •§ 108. Теория «мелкой воды»
- •Глава XI
- •§ 109. Волна разрежения
- •§ 111. Пересечение ударных волн с твердой поверхностью
- •§ 112. Сверхзвуковое обтекание угла
- •§ 113. Обтекание конического острия
- •Глава XII
- •§ 114. Потенциальное движение сжимаемого газа
- •§ 115. Стационарные простые волны
- •§ 116. Уравнение Чаплыгина (общая задача
- •§ 117. Характеристики плоского стационарного течения
- •§ 118. Уравнение Эйлера — Трикоми. Переход через звуковую скорость
- •§1191 Решение уравнения эйлера —трикоми 619
- •§ 119. Решения уравнения Эйлера — Трикоми вблизи неособых точек звуковой поверхности
- •§ 120. Обтекание со звуковой скоростью
- •§ 121. Отражение слабого разрыва от звуковой линии
- •Глава XIII
- •§ 122. Образование ударных воли при сверхзвуковом обтекании тел
- •§ 123. Сверхзвуковое обтекание заостренного тела
- •§ 124. Дозвуковое обтекание тонкого крыла
- •§ 125. Сверхзвуковое обтекание крыла
- •§ 126. Околозвуковой закон подобия
- •§ 127. Гиперзвуковой закон подобия
- •Глава XIV
- •§ 128. Медленное горение
- •§ 129. Детонация
- •§ 130. Распространение детонационной волны
- •§ 131. Соотношение между различными режимами горения
- •§ 132. Конденсационные скачки
- •Глава XV
- •§ 133. Тензор энергии-импульса жидкости
- •§ 134. Релятивистские гидродинамические уравнения
- •§ 135. Ударные волны в релятивистской гидродинамике
- •§ 136. Релятивистские уравнения движения вязкой и теплопроводной среды
- •§ 137. Основные свойства сверхтекучей жидкости
- •§ 138. Термомеханический эффект
- •§ 139. Уравнения гидродинамики сверхтекучей жидкости
- •§ 140. Диссипативные процессы в сверхтекучей жидкости
- •§ 141. Распространение звука в сверхтекучей жидкости
§ 41. Устойчивость движения в ламинарном пограничном слое
Ламинарное движение в пограничном слое, как и всякое другое ламинарное течение, при достаточно больших числах Рейнольдса становится в той или иной степени неустойчивым. Характер потери устойчивости в пограничном слое аналогичен потере устойчивости при течении по трубе (§ 28).
Число Рейнольдса для течения в пограничном слое меняется вдоль поверхности обтекаемого тела. Так, при обтекании пластинки можно определить число Рейнольдса как R* = Ux/v, где х—расстояние от переднего края пластинки, U — скорость жидкости вне пограничного слоя. Более характерным для пограничного слоя, однако, является такое определение, в котором роль размеров играет какая-либо длина, непосредственно характеризующая толщину слоя; в качестве таковой можно выбрать толщину вытеснения, определенную согласно (39,26):
R» = -^1=l,72 VR,
(41,1)
(числовой коэффициент относится к пограничному слою на плоской поверхности).
Ввиду сравнительной медленности изменения толщины слоя с расстоянием, и малости поперечной скорости жидкости в нем, при исследовании устойчивости течения в небольшом участке пограничного слоя можно рассматривать плоско-параллельное течение с неизменным вдоль оси х профилем1). Тогда с матема-
') При таком рассмотрении остается, конечно, в стороне вопрос о влиянии, которое может иметь на устойчивость пограничного слоя кривизна обтекаемой поверхности. Имеется также и определенная непоследовательность, связанная с делаемыми пренебрежениями. Дело в том, что единственными плоско-параллельными течениями (с профилем скорости, зависящим только от одной координаты), удовлетворяющими уравнению Навье—Стокса, являются течения с линейным (17,1) и параболическим (17,4) профилями (в то время как уравнение Эйлера удовлетворяется плоско-параллельным течением с произвольным профилем). Поэтому рассматриваемое в теории устойчивости пограничного слоя основное течение не является, строго говоря, решением уравнений движения.
тической точки зрения задача будет аналогична задаче об устойчивости течения между двумя параллельными плоскостями (о которой шла речь в § 29). Разница состоит лишь в форме профиля скоростей: вместо симметричного профиля с v = 0 на обеих границах здесь имеется несимметричный профиль, в котором скорость меняется от нуля на поверхности тела до заданного значения U — скорости потока вне пограничного слоя. Такое исследование приводит к следующим результатам (W. Toll-mien, 1929; Н. Schlichting, 1933; С. С. Lin, 1945).
Форма нейтральной кривой на диаграмме со, R (см. § 28) зависит от формы профиля скоростей в пограничном слое. Если профиль скоростей не имеет точки перегиба (скорость vx монотонно возрастает, причем кривая vx = vx(y) везде выпуклая; рис. 28,а), то граница устойчивости имеет форму, вполне аналогичную той, которая характеризует устойчивость течения в трубе: имеется некоторое минимальное значение R = RKp, при котором появляются усиливающиеся возмущения, а при R ->- оо обе ветви кривой асимптотически приближаются к оси абсцисс (рис. 29, а). Для профиля скоростей, имеющего место в пограничном слое на плоской пластинке, вычисление дает для критического значения числа Рейнольдса значение1) ReKp«* 420.
Профиль скоростей типа рис. 28, а не может иметь места, если скорость жидкости вне пограничного слоя уменьшается вниз по течению; в этом случае профиль скоростей непременно должен иметь точку перегиба. Действительно, рассмотрим небольшой участок поверхности стенки, который можно считать плоским, и пусть х есть опять продольная координата вдоль направления течения, а у — расстояние от стенки. Из соотношения
1
dp
=
ц
6U
р
dx дх
видно, что если U падает вниз по течению (д.1//дх <0), то вблизи поверхности
т. е. кривая vx = vx(y) — вогнутая. При увеличении же у скорость vx должна асимптотически приближаться к конечному пределу U. Уже из геометрических соображений ясно, что для этого кривая должна стать выпуклой, а потому имеет где-то точку перегиба (рис. 28,6).
*)
При Rj->oo
на
ветвях I
я II нейтральной
кривой ю обращается в
нуль
соответственно как Rj1/2
и Rjj"1'5.
Точке
R
=я
RKp
отвечает
частота <л«р
=
0,15- U/6*
и
волновое число Акр «= 0,36/6*,
ветви
кривой имеют при R-»-oo
различные
асимптоты: одна ветвь по-прежнему
асимптотически приближается к оси
абсцисс, а
на
другой ш стремится к конечному, отличному
от нуля пределу
(рис.
29,6). Кроме
того,
наличие точки перегиба сильно Понижает
значение RKp.
То
обстоятельство, что число Рейнольдса
возрастает вдоль пограничного слоя,
придает своеобразный характер поведению
возмущений при их сносе вниз
б)
У 6)
Ь
Рис.
28 Рис.
29
месте
пограничного слоя производится
возмущение с заданной частотой ш. Его
распространению вниз по течению
соответствует на диаграмме рис. 29,а
перемещение
вправо по горизонтальной прямой (о =
const.
При
этом возмущение сначала затухает, затем
по достижений ветви / границы устойчивости
начнет усиливаться. Усиление
продолжается до момента достижения
ветви //, после чего возмущение вновь
будет затухать. Полный коэффициент
усиления возмущения за время его
прохождения через область неустойчивости
очень быстро возрастает по мере того,
как эта область сдвигается в сторону
больших R
(т.
е. чем ниже на рис. 29, а расположен
соответствующий горизонтальный отрезок
между ветвями I
и
II
границы
устойчивости).
Вопрос
о характере неустойчивости пограничного
слоя по отношению к бесконечно малым
возмущениям (абсолютном или конвективном)
еще не имеет полного решения. Для профиля
скоростей без точки перегиба
неустойчивость является конвективной
в той области значений R,
где
обе ветви нейтральной кривой (рис.
29, о) близки к оси абсцисс (сюда относится
то же самое доказательство, что
и
для плоского пуазейлевого тече
ния —см. примечание на с. 150). Для меньших значений R, а также для профилей скорости с точкой перегиба вопрос остается открытым.
Благодаря изменению числа Рейнольдса вдоль пограничного слоя, турбулизируется не сразу весь слой, а лишь та его часть, для которой Re превышает определенное значение. При заданной скорости обтекания это значит, что турбулизация возникает на определенном расстоянии от переднего края; при увеличении скорости это место приближается к переднему краю. Экспериментальные данные показывают, что место возникновения турбулентности в пограничном слое существенно зависит также от интенсивности возмущений в натекающем потоке. По мере уменьшения степени возмущенности наступление турбулентности отодвигается к более высоким значениям Re.
Различие между нейтральными кривыми на рис. 29, а и 29, б имеет принципиальный характер. Тот факт, что на верхней ветви частота стремится при Re-»-oo к отличному от нуля пределу, означает, что движение остается неустойчивым при сколь угодно малой вязкости, между тем как в случае кривой типа рис. 23, а при v->-0 возмущения с любой конечной частотой затухают. Это различие обусловлено именно наличием или отсутствием точки перегиба в профиле скоростей vx = v(y). Его происхождение можно проследить с математической точки зрения, рассмотрев задачу об устойчивости в рамках гидродинамики идеальной жидкости (Rayleigh, 1880).
Подставим в уравнение плоского движения идеальной жидкости (10,10) функцию тока в виде
Ф = М«/) + *М*> 2/. *),
где 1р0 — функция тока невозмущенного течения (так что ty'0 = v(y)), a \pi — малое возмущение. Последнее ищем в виде
tp, = ф (#) е
Подстановка в (10,10) приводит к следующему линеаризованному уравнению для функции tpi'):
(f - j) (Ф" - fe2<p) - 0"<Р = 0. (41,2)
Если границей движения (по оси у) является твердая стенка, то на ней ф = 0 (как следствие условия vy = 0); если же ширина потока не ограничена (с одной или с обоих сторон), то такое же условие должно быть поставлено на бесконечности, где поток однороден. Будем рассматривать k как заданную вещественную величину; частота же ш определяется тогда по собственным значениям граничной задачи для уравнения (41,2).
') Любая функция vf>0(i/) удовлетворяет уравнению (10,10) тождественно}
ср. сказанное в примечании на с. 236.
Разделим уравнение (41,2) на (v — a/k), умножим на <р* и проинтегрируем по у между двумя границами движения yi и у2. Проинтегрировав произведение ф*ср" по частям, получим
J* (IФ' I2 + А21Ф I2) dy + J* -£±2L. dy = 0. (41,3)
Первый член здесь во всяком случае веществен. Предполагая частоту комплексной и отделив мнимую часть равенства, получим:
Г У* „. |2
Для того чтобы могло быть 1таф0, должен обращаться в нуль интеграл, а для этого во всяком случае необходимо, чтобы где-либо в области интегрирования v" проходило через нуль. Таким образом, неустойчивость может возникнуть (при v = 0) лишь для профилей скорости с точкой перегиба ').
С физической точки зрения, происхождение этой неустойчивости связано с «резонансным» взаимодействием между колебаниями среды и движением ее частиц в основном течении, и в этом смысле оно аналогично происхождению известного из кинетической теории затухания (или усиления в неустойчивом случае) Ландау колебаний в бесстолкновительной плазме (см. X, § 30)2).