
- •§ 1. Уравнение непрерывности
- •§ Pvrff,
- •§ 2. Уравнение Эйлера
- •§ 3. Гидростатика
- •§ 4. Условие отсутствия конвекции
- •§ 5. Уравнение Бернулли
- •§ 6. Поток энергии
- •§ 7. Поток импульса
- •§ 8. Сохранение циркуляции скорости
- •§ 9. Потенциальное движение
- •§ 10. Несжимаемая жидкость
- •§ 12. Гравитационные волны
- •§ 13. Внутренние волны в несжимаемой жидкости
- •§ 14. Волны во вращающейся жидкости
- •Глава II
- •§ 15. Уравнения движения вязкой жидкости
- •§ 16. Диссипация энергии в несжимаемой жидкости
- •§17. Течение по трубе
- •§ 18. Движение жидкости между вращающимися цилиндрами
- •§ 19. Закон подобия
- •§ 20. Течение при малых числах Рейнольдса
- •§ 21. Ламинарный след
- •§ 22. Вязкость суспензий
- •§ 23. Точные решения уравнений движения вязкой жидкости
- •§ 24. Колебательное движение в вязкой жидкости
- •§ 25. Затухание гравитационных волн
- •Глава III
- •§ 26. Устойчивость стационарного движения жидкости
- •§ 27. Устойчивость вращательного движения жидкости
- •§ 29. Неустойчивость тангенциальных разрывов
- •§ 30. Квазипериодическое движение и синхронизация частот3)
- •§ 31. Странный аттрактор
- •§ 32. Переход к турбулентности путем удвоения периодов
- •§ 33. Развитая турбулентность
- •§ 34. Корреляционные функции скоростей
- •§ 35. Турбулентная область и явление отрыва
- •§ 36. Турбулентная струя
- •§ 37. Турбулентный след
- •§ 38. Теорема Жуковского
- •Глава IV
- •§ 39. Ламинарный пограничный слой
- •1. Определить толщину пограничного слоя вблизи критической точки (см. § 10) на обтекаемом жидкостью теле.
- •2. Определить движение в пограничном слое при конфузорном (см. § 23) течении между двумя пересекающимися плоскостями (к.. Pohlhausen, 1921).
- •§ 41. Устойчивость движения в ламинарном пограничном слое
- •2) Эта аналогия указана а в. Тимофеевым (1979) и а а Андроновым и а л. Фабрикантом (1979); ниже мы следуем изложению а. В. Тимофеева.
- •8) При V"(y) шг 0 уравнение (41,2) вообще не имеет решений, удовлетворяющих необходимым граничным условиям.
- •§ 42. Логарифмический профиль скоростей
- •§ 43. Турбулентное течение в трубах
- •§ 44. Турбулентный пограничный слой
- •§ 45. Кризис сопротивления
- •§ 46. Хорошо обтекаемые тела
- •§ 47. Индуктивное сопротивление
- •§ 48. Подъёмная сила тонкого крыла
- •S2(£)-Citt) 6-«
- •Глава V
- •§ 49. Общее уравнение переноса тепла
- •§ 50. Теплопроводность в несжимаемой жидкости
- •§ 51. Теплопроводность в неограниченной среде
- •§ 52. Теплопроводность в ограниченной среде
- •§ 53. Закон подобия для теплопередачи
- •§ 54. Теплопередача в пограничном слое
- •ВгТт « - у«р-
- •§ 55. Нагревание тела в движущейся жидкости
- •§ 56. Свободная конвекция
- •§ 57. Конвективная неустойчивость неподвижной жидкости
- •§ 58. Уравнения гидродинамики для жидкой смеси
- •§ 59. Коэффициенты диффузии и термодиффузии
- •§ 60. Диффузия взвешенных в жидкости частиц
- •Глава VII
- •§ 61. Формула Лапласа
- •§ 62. Капиллярные волны
- •§ 63. Влияние адсорбированных пленок на движение жидкости
- •Глава VIII
- •§ 64. Звуковые волны
- •§ 66. Энергия и импульс звуковых волн
- •§ 66. Отражение и преломление звуковых волн
- •§ 67. Геометрическая акустика
- •§ 68. Распространение звука в движущейся среде
- •§ 69. Собственные колебания
- •§ 70. Сферические волны
- •§71. Цилиндрические волны
- •§ 72. Общее решение волнового уравнения
- •Ctjc42-(X-q2- (*/-г,)2'
- •§ 73. Боковая волна
- •§ 74. Излучение звука
- •§ 75. Возбуждение звука турбулентностью
- •V 1г' 4я j дхидх1к
- •§ 76. Принцип взаимности
- •§ 77. Распространение звука по трубке
- •§ 78. Рассеяние звука
- •§ 79. Поглощение звука
- •4. Определить дополнительное поглощение звука, распространяющегося в смеси двух веществ, связанное с диффузией (и. Г. Шапошников и 3. А Гольдберг, 1952).
- •§ 80. Акустическое течение
- •§ 81. Вторая вязкость
- •Глава IX
- •§ 82. Распространение возмущений в потоке сжимаемого газа
- •2) Во избежание недоразумений оговорим, что если перед обтекаемым телом возникает ударная волна, то эта область несколько увеличивается (см. § 122).
- •§ 83. Стационарный поток сжимаемого газа
- •§ 84. Поверхности разрыва
- •§ 85. Ударная адиабата
- •2) Такой выбор системы координат будет подразумеваться везде в этой главе, за исключением § 92.
- •§ 86. Ударные волны слабой интенсивности
- •§ 87] Направление изменения величин в ударной волне 463
- •§ 87. Направление изменения величин в ударной волне
- •§ 88. Эволюционность ударных волн
- •§ 89. Ударные волны в политропном газе
- •1. Получить формулу
- •§ 90. Гофрировочная неустойчивость ударных волн
- •2) Сравните с аналогичной ситуацией для тангенциальных разрывов — задача 2 § 84.
- •1) Эта неустойчивость тоже была указана с. П. Дьяковым (1954); правильное значение нижней границы в (90,17) найдено в. М. Конторовичем (1957).
- •§ 91. Распространение ударной волны по трубе
- •§ 92. Косая ударная волна
- •§ 93. Ширина ударных волн
- •§ 94. Ударные волны в релаксирующей среде
- •§ 96. Слабые разрывы
- •Глава X
- •§ 97. Истечение газа через сопло
- •§ 98. Вязкое движение сжимаемого газа по трубе
- •§ 99. Одномерное автомодельное движение
- •5. Определить движение в изотермической автомодельной волне разрежения.
- •§ 100. Разрывы в начальных условиях
- •§ 101. Одномерные бегущие волны
- •§ 102. Образование разрывов в звуковой волне
- •§ 103. Характеристики
- •§ 104. Инварианты Римана
- •§ 105. Произвольное одномерное движение сжимаемого газа
- •§ 106. Задача о сильном взрыве
- •§ 107. Сходящаяся сферическая ударная волна
- •2) Эта задача была рассмотрена независимо Гудерлеем (о. Guderleu, 1942) и л. Д. Ландау и к. П. Станюковичем (1944, опубликовано в 1955).
- •§ 108. Теория «мелкой воды»
- •Глава XI
- •§ 109. Волна разрежения
- •§ 111. Пересечение ударных волн с твердой поверхностью
- •§ 112. Сверхзвуковое обтекание угла
- •§ 113. Обтекание конического острия
- •Глава XII
- •§ 114. Потенциальное движение сжимаемого газа
- •§ 115. Стационарные простые волны
- •§ 116. Уравнение Чаплыгина (общая задача
- •§ 117. Характеристики плоского стационарного течения
- •§ 118. Уравнение Эйлера — Трикоми. Переход через звуковую скорость
- •§1191 Решение уравнения эйлера —трикоми 619
- •§ 119. Решения уравнения Эйлера — Трикоми вблизи неособых точек звуковой поверхности
- •§ 120. Обтекание со звуковой скоростью
- •§ 121. Отражение слабого разрыва от звуковой линии
- •Глава XIII
- •§ 122. Образование ударных воли при сверхзвуковом обтекании тел
- •§ 123. Сверхзвуковое обтекание заостренного тела
- •§ 124. Дозвуковое обтекание тонкого крыла
- •§ 125. Сверхзвуковое обтекание крыла
- •§ 126. Околозвуковой закон подобия
- •§ 127. Гиперзвуковой закон подобия
- •Глава XIV
- •§ 128. Медленное горение
- •§ 129. Детонация
- •§ 130. Распространение детонационной волны
- •§ 131. Соотношение между различными режимами горения
- •§ 132. Конденсационные скачки
- •Глава XV
- •§ 133. Тензор энергии-импульса жидкости
- •§ 134. Релятивистские гидродинамические уравнения
- •§ 135. Ударные волны в релятивистской гидродинамике
- •§ 136. Релятивистские уравнения движения вязкой и теплопроводной среды
- •§ 137. Основные свойства сверхтекучей жидкости
- •§ 138. Термомеханический эффект
- •§ 139. Уравнения гидродинамики сверхтекучей жидкости
- •§ 140. Диссипативные процессы в сверхтекучей жидкости
- •§ 141. Распространение звука в сверхтекучей жидкости
§ 38. Теорема Жуковского
Описанный в конце предыдущего параграфа характер распределения скоростей вокруг обтекаемого тела не относится к исключительным случаям, когда толщина образующегося 'за телом следа очень мала по сравнению с его шириной. Такой след образуется при обтекании тел, толщина которых (в направлении оси у) мала по сравнению с их шириной в направлении z (длина же в направлении обтекания — оси х — может быть произвольной), другими словами, речь идет об обтекании тел, поперечное (к направлению движения) сечение которых обладает сильно вытянутой в одном направлении формой. Сюда относятся, в частности, обтекания крыльев—тел, размах которых велик по сравнению со всеми остальными их размерами.
Ясно, что в таком случае нет никаких причин для того, чтобы перпендикулярная к плоскости турбулентного следа скорость иу
заметно уменьшалась уже на расстояниях порядка толщины следа. Напротив, эта скорость будет теперь иметь одинаковый порядок величины как внутри следа, так и на значительных (порядка размаха крыла) расстояниях от него. При этом, конечно, предполагается, что подъемная сила отлична от нуля; в противном случае поперечная скорость практически вообще отсутствует.
Рассмотрим вертикальную подъемную силу Fy, развивающуюся при таком обтекании. Согласно формуле (21,2) она определяется интегралом
Fy = -pU^uydydz, (38,1)
причем ввиду характера распределения скорости щ интегрирование в данном случае должно производиться по всей поперечной плоскости. Более того, поскольку толщина следа (по оси у) мала, а скорость иу внутри него отнюдь не велика по сравнению с этой же скоростью вне следа, то в рассматриваемом случае можно с достаточной точностью ограничиться при интегрировании по dy интегрированием только по области вне следа, т. е. написать:
-f оо оо уг
Uydy « ^ иу dy + ^ иу dy,
— x у, -ОО
Рис. 26
где у\ и у2 — координаты границ следа (рис. 26).
Но вне следа движение потенциально и иу — д^/ду\ имея в виду, что на бесконечности ф = 0, получаем поэтому
^ Uydy = ср2 — фь
где фг и ф1 — значения потенциала на обеих сторонах следа; можно сказать, что ф2 — ф1 есть скачок потенциала на поверхности разрыва, которой можно заменить тонкий след. Что же касается производных от ф, то производная иу = ду/ду должна оставаться непрерывной. Скачок нормальной к поверхности следа компоненты скорости означал бы, что некоторое количество жидкости втекает в след; между тем, в приближении, в котором толщина следа пренебрегается, этот эффект должен отсутствовать. Таким образом, мы заменяем след поверхностью тангенциального разрыва. Далее, в этом же приближении на следе должно быть непрерывно также и давление. Поскольку изменение давления определяется согласно формуле Бернулли в первом приближении величиной pUux = pUdq>/dx, от отсюда следует, что должна быть непрерывна и производная ду/дх. Производная же ду/dz— скорость в направлении размаха крыла—• испытывает, вообще говоря, скачок.
Ввиду непрерывности производной д(р/дх скачок q>2 — cpi есть величина, зависящая только от z, но не от координаты х вдоль длины следа. Таким образом, получаем для подъемной силы следующую формулу:
F, = -p£/$(q>2-q>,)dz. (38,2)
Интегрирование по dz распространяется фактически лишь по ширине следа (вне следа, конечно, ср2 — cpi =0).
Эту формулу можно представить в несколько ином виде. Для этого замечаем, что по известным свойствам интегралов от градиента скаляра можно написать разность ср2 — cpi в виде криволинейного интеграла
Уф • dl — ^ (иу dy + их dx),
взятого по контуру, выходящему из точки yi, огибающему тело и приходящему в точку у2, проходя, таким образом, везде в области потенциального движения. А благодаря тонкости следа можно, не изменяя интеграла с точностью до малых величин высшего порядка, дополнить этот длинный контур коротким отрезком от у\ до у2, превратив его таким образом в замкнутый. Обозначая посредством Г циркуляцию скорости по замкнутому контуру С, охватывающему тело (рис. 26):
Г = § и dl = ф2 — ф1, (38,3)
получаем для подъемной силы формулу
Fy=-pU\jrdz. (38,4)
Знак циркуляции скорости выбирается всегда для обхода контура в направлении против часовой стрелки. Знак в формуле (38,3) связан также и с выбором направления обтекания: мы предполагали везде, что обтекание происходит в положительном направлении оси х (поток натекает слева направо).
Устанавливаемая формулой (38,4) связь подъемной силы с циркуляцией скорости составляет содержание теоремы Н. Е. Жуковского (1906). К применению этой теоремы к хорошо обтекаемым крыльям мы вернемся еще в § 46.
Задачи
1. Определить закон расширения турбулентного следа, образующегося при поперечном обтекании бесконечно длинного цилиндра.
Решение. Для силы сопротивления fx, отнесенной к единице длины цилиндра, имеем по порядку величины fx ~ pUuY. Комбинируя это с соотношением (37,1) > получаем для ширины следа Y:
pU2
где А — постоянная. Средняя скорость и в следе падает по закону
7
и~ Л/ —.
рх
Число Рейнольдса R ~ Yu/v ~ fxlvpU не зависит от х и потому ламинарного участка след не имеет.
Укажем, что согласно экспериментальным данным постоянный коэффициент в (1) равен А = 0,9 (причем Y есть полуширина следа); если под У понимать расстояние, на котором скорость их падает до половины своего максимального значения по середине следа, то А = 0,4.
2. Определить движение вне следа, образующегося при поперечном обтекании бесконечно длинного тела.
Решение. Вне следа движение потенциально (потенциал обозначаем здесь посредством Ф в отличие от угла ф в цилиндрической системе координат г, г, ф с осью z вдоль длины тела). Подобно тому как было сделано в (21,16), заключаем, что должно быть
УФ df =
pU'
где теперь интегрирование производится по поверхности цилиндра большого радиуса с осью вдоль оси х и длиной, равной единице, a fx есть сила сопротивления, отнесенная к единице длины тела. Удовлетворяющее этому условию решение двухмерного уравнения Лапласа ДФ = 0 есть
Ф = In г.
Далее, для подъемной силы имеем согласно (38,2)
/,-Р"(Ф,-Ф8).
Наименее быстро убывающим с расстоянием решением уравнения Лапласа, испытывающим скачок на плоскости ф = 0, является
Ф
= const
ф
= _
^у
т.
ф
2яр£/
(выбор константы определяется тем, что ф2 —ф1 = 2л). Движение жидкости определяется суммой обоих найденных решений:
Ф=2^(^1ПГ-^). »
Цилиндрические компоненты скорости и равны!
дФ fx 1 дФ fy
Ur дг ^ 2npUr ' г 6\p InpUr ' *3)
Скорость и образует с цилиндрическим радиус-вектором постоянный угол, тангенс которого равен fv/jx.
3. Определить закон изгибания следа за бесконечно длинным телом при наличии подъемной силы.
Решение. При наличии подъемной силы след (рассматриваемый как поверхность разрыва) изгибается в плоскости ху. Закон у = у(х) этого изгибания определяется уравнением
dx dy_
Подставив сюда согласно (3) ы„ ж —fy/2npUx и пренебрегая их по сравнению с U, получим:
йУ 1у
dx 2яр£/2х'
откуда
fy ,