
- •§ 1. Уравнение непрерывности
- •§ Pvrff,
- •§ 2. Уравнение Эйлера
- •§ 3. Гидростатика
- •§ 4. Условие отсутствия конвекции
- •§ 5. Уравнение Бернулли
- •§ 6. Поток энергии
- •§ 7. Поток импульса
- •§ 8. Сохранение циркуляции скорости
- •§ 9. Потенциальное движение
- •§ 10. Несжимаемая жидкость
- •§ 12. Гравитационные волны
- •§ 13. Внутренние волны в несжимаемой жидкости
- •§ 14. Волны во вращающейся жидкости
- •Глава II
- •§ 15. Уравнения движения вязкой жидкости
- •§ 16. Диссипация энергии в несжимаемой жидкости
- •§17. Течение по трубе
- •§ 18. Движение жидкости между вращающимися цилиндрами
- •§ 19. Закон подобия
- •§ 20. Течение при малых числах Рейнольдса
- •§ 21. Ламинарный след
- •§ 22. Вязкость суспензий
- •§ 23. Точные решения уравнений движения вязкой жидкости
- •§ 24. Колебательное движение в вязкой жидкости
- •§ 25. Затухание гравитационных волн
- •Глава III
- •§ 26. Устойчивость стационарного движения жидкости
- •§ 27. Устойчивость вращательного движения жидкости
- •§ 29. Неустойчивость тангенциальных разрывов
- •§ 30. Квазипериодическое движение и синхронизация частот3)
- •§ 31. Странный аттрактор
- •§ 32. Переход к турбулентности путем удвоения периодов
- •§ 33. Развитая турбулентность
- •§ 34. Корреляционные функции скоростей
- •§ 35. Турбулентная область и явление отрыва
- •§ 36. Турбулентная струя
- •§ 37. Турбулентный след
- •§ 38. Теорема Жуковского
- •Глава IV
- •§ 39. Ламинарный пограничный слой
- •1. Определить толщину пограничного слоя вблизи критической точки (см. § 10) на обтекаемом жидкостью теле.
- •2. Определить движение в пограничном слое при конфузорном (см. § 23) течении между двумя пересекающимися плоскостями (к.. Pohlhausen, 1921).
- •§ 41. Устойчивость движения в ламинарном пограничном слое
- •2) Эта аналогия указана а в. Тимофеевым (1979) и а а Андроновым и а л. Фабрикантом (1979); ниже мы следуем изложению а. В. Тимофеева.
- •8) При V"(y) шг 0 уравнение (41,2) вообще не имеет решений, удовлетворяющих необходимым граничным условиям.
- •§ 42. Логарифмический профиль скоростей
- •§ 43. Турбулентное течение в трубах
- •§ 44. Турбулентный пограничный слой
- •§ 45. Кризис сопротивления
- •§ 46. Хорошо обтекаемые тела
- •§ 47. Индуктивное сопротивление
- •§ 48. Подъёмная сила тонкого крыла
- •S2(£)-Citt) 6-«
- •Глава V
- •§ 49. Общее уравнение переноса тепла
- •§ 50. Теплопроводность в несжимаемой жидкости
- •§ 51. Теплопроводность в неограниченной среде
- •§ 52. Теплопроводность в ограниченной среде
- •§ 53. Закон подобия для теплопередачи
- •§ 54. Теплопередача в пограничном слое
- •ВгТт « - у«р-
- •§ 55. Нагревание тела в движущейся жидкости
- •§ 56. Свободная конвекция
- •§ 57. Конвективная неустойчивость неподвижной жидкости
- •§ 58. Уравнения гидродинамики для жидкой смеси
- •§ 59. Коэффициенты диффузии и термодиффузии
- •§ 60. Диффузия взвешенных в жидкости частиц
- •Глава VII
- •§ 61. Формула Лапласа
- •§ 62. Капиллярные волны
- •§ 63. Влияние адсорбированных пленок на движение жидкости
- •Глава VIII
- •§ 64. Звуковые волны
- •§ 66. Энергия и импульс звуковых волн
- •§ 66. Отражение и преломление звуковых волн
- •§ 67. Геометрическая акустика
- •§ 68. Распространение звука в движущейся среде
- •§ 69. Собственные колебания
- •§ 70. Сферические волны
- •§71. Цилиндрические волны
- •§ 72. Общее решение волнового уравнения
- •Ctjc42-(X-q2- (*/-г,)2'
- •§ 73. Боковая волна
- •§ 74. Излучение звука
- •§ 75. Возбуждение звука турбулентностью
- •V 1г' 4я j дхидх1к
- •§ 76. Принцип взаимности
- •§ 77. Распространение звука по трубке
- •§ 78. Рассеяние звука
- •§ 79. Поглощение звука
- •4. Определить дополнительное поглощение звука, распространяющегося в смеси двух веществ, связанное с диффузией (и. Г. Шапошников и 3. А Гольдберг, 1952).
- •§ 80. Акустическое течение
- •§ 81. Вторая вязкость
- •Глава IX
- •§ 82. Распространение возмущений в потоке сжимаемого газа
- •2) Во избежание недоразумений оговорим, что если перед обтекаемым телом возникает ударная волна, то эта область несколько увеличивается (см. § 122).
- •§ 83. Стационарный поток сжимаемого газа
- •§ 84. Поверхности разрыва
- •§ 85. Ударная адиабата
- •2) Такой выбор системы координат будет подразумеваться везде в этой главе, за исключением § 92.
- •§ 86. Ударные волны слабой интенсивности
- •§ 87] Направление изменения величин в ударной волне 463
- •§ 87. Направление изменения величин в ударной волне
- •§ 88. Эволюционность ударных волн
- •§ 89. Ударные волны в политропном газе
- •1. Получить формулу
- •§ 90. Гофрировочная неустойчивость ударных волн
- •2) Сравните с аналогичной ситуацией для тангенциальных разрывов — задача 2 § 84.
- •1) Эта неустойчивость тоже была указана с. П. Дьяковым (1954); правильное значение нижней границы в (90,17) найдено в. М. Конторовичем (1957).
- •§ 91. Распространение ударной волны по трубе
- •§ 92. Косая ударная волна
- •§ 93. Ширина ударных волн
- •§ 94. Ударные волны в релаксирующей среде
- •§ 96. Слабые разрывы
- •Глава X
- •§ 97. Истечение газа через сопло
- •§ 98. Вязкое движение сжимаемого газа по трубе
- •§ 99. Одномерное автомодельное движение
- •5. Определить движение в изотермической автомодельной волне разрежения.
- •§ 100. Разрывы в начальных условиях
- •§ 101. Одномерные бегущие волны
- •§ 102. Образование разрывов в звуковой волне
- •§ 103. Характеристики
- •§ 104. Инварианты Римана
- •§ 105. Произвольное одномерное движение сжимаемого газа
- •§ 106. Задача о сильном взрыве
- •§ 107. Сходящаяся сферическая ударная волна
- •2) Эта задача была рассмотрена независимо Гудерлеем (о. Guderleu, 1942) и л. Д. Ландау и к. П. Станюковичем (1944, опубликовано в 1955).
- •§ 108. Теория «мелкой воды»
- •Глава XI
- •§ 109. Волна разрежения
- •§ 111. Пересечение ударных волн с твердой поверхностью
- •§ 112. Сверхзвуковое обтекание угла
- •§ 113. Обтекание конического острия
- •Глава XII
- •§ 114. Потенциальное движение сжимаемого газа
- •§ 115. Стационарные простые волны
- •§ 116. Уравнение Чаплыгина (общая задача
- •§ 117. Характеристики плоского стационарного течения
- •§ 118. Уравнение Эйлера — Трикоми. Переход через звуковую скорость
- •§1191 Решение уравнения эйлера —трикоми 619
- •§ 119. Решения уравнения Эйлера — Трикоми вблизи неособых точек звуковой поверхности
- •§ 120. Обтекание со звуковой скоростью
- •§ 121. Отражение слабого разрыва от звуковой линии
- •Глава XIII
- •§ 122. Образование ударных воли при сверхзвуковом обтекании тел
- •§ 123. Сверхзвуковое обтекание заостренного тела
- •§ 124. Дозвуковое обтекание тонкого крыла
- •§ 125. Сверхзвуковое обтекание крыла
- •§ 126. Околозвуковой закон подобия
- •§ 127. Гиперзвуковой закон подобия
- •Глава XIV
- •§ 128. Медленное горение
- •§ 129. Детонация
- •§ 130. Распространение детонационной волны
- •§ 131. Соотношение между различными режимами горения
- •§ 132. Конденсационные скачки
- •Глава XV
- •§ 133. Тензор энергии-импульса жидкости
- •§ 134. Релятивистские гидродинамические уравнения
- •§ 135. Ударные волны в релятивистской гидродинамике
- •§ 136. Релятивистские уравнения движения вязкой и теплопроводной среды
- •§ 137. Основные свойства сверхтекучей жидкости
- •§ 138. Термомеханический эффект
- •§ 139. Уравнения гидродинамики сверхтекучей жидкости
- •§ 140. Диссипативные процессы в сверхтекучей жидкости
- •§ 141. Распространение звука в сверхтекучей жидкости
§ 35. Турбулентная область и явление отрыва
Турбулентное движение является, вообще говоря, вихревым. Однако распределение завихренности вдоль объема жидкости обнаруживает при турбулентном движении (при очень больших R) существенные особенности. Именно, при «стационарном» турбулентном обтекании тел весь объем жидкости можно обычно разделить на две области, отграниченные одна от другой. В одной из них движение является вихревым, а в другой завихренность отсутствует, и движение потенциально. Завихренность оказывается, таким образом, распределенной не по всему объему жидкости, а лишь по его части (вообще говоря, тоже бесконечной).
Возможность существования такой отграниченной области вихревого движения является следствием того, что турбулентное движение может рассматриваться как движение идеальной жидкости, описывающееся уравнениями Эйлера1). Мы видели (§ 8), что для движения идеальной жидкости имеет место закон сохранения циркуляции скорости. В частности, если в какой-нибудь точке линии тока ротор скорости равен нулю, то это имеет место и вдоль всей этой линии. Напротив, если в какой-нибудь точке линии тока rot v ф 0, то он отличен от нуля вдоль всей линии
') Границей применимости этих уравнений к турбулентному движению являются расстояния порядка Ко. Поэтому и о резкой границе между областями вихревого и безвихревого движений можно говорить только с точностью до таких расстояний.
тока. Отсюда ясно, что наличие отграниченных областей вихревого и безвихревого движения совместимо с уравнениями движения, если область вихревого движения представляет собой область, за границы которой не выходят находящиеся внутри нее линии тока. Такое распределение завихренности будет устойчивым, и завихренность не будет проникать за поверхность раздела.
Одним из свойств области вихревого турбулентного движения является то, что обмен жидкостью между нею и окружающим пространством может быть только односторонним. Жидкость может втекать в нее из области потенциального движения, но никогда не вытекает из нее.
Подчеркнем, что приведенные здесь соображения не могут, конечно, рассматриваться как сколько-нибудь точное доказательство высказанных утверждений. Однако наличие отграниченных областей вихревого турбулентного движения, по-видимому, подтверждается опытом.
Как в вихревой, так и в безвихревой областях движение турбулентно. Однако характер этой турбулентности совершенно различен в обеих областях. Для выяснения происхождения этого различия обратим внимание на следующее общее свойство потенциального движения, описывающегося уравнением Лапласа Аф = 0. Предположим, что движение периодично в плоскости х, у, так что ф зависит от х и у посредством множителя вида ёхр {i (kix -f k2y)}; тогда
и поскольку сумма вторых производных должна быть равна нулю, ясно, что вторая производная по координате z равна ф, умноженному на положительный коэффициент: d2q>/dz2 = k2y. Но тогда зависимость ф от z будет определяться затухающим множителем вида е~кг при z > 0 (неограниченное возрастание, как екг, очевидно, невозможно). Таким образом, если потенциальное движение периодично в некоторой плоскости, то оно должно быть затухающим вдоль перпендикулярного к этой плоскости направления. При этом чем больше k\ и k2, т. е. чем меньше период повторяемости движения в плоскости х, у, тем быстрее затухает движение вдоль оси z. Эти рассуждения остаются качественно применимыми и в тех случаях, когда движение не является строго периодическим, а лишь обнаруживает некоторую качественную повторяемость.
Отсюда вытекает следующий результат. Вне области вихревого движения турбулентные пульсации должны затухать, причем тем быстрее, чем меньше их масштаб. Другими словами, мелкомасштабные пульсации не проникают глубоко в область потенциального движения. В результате заметную роль в этой области играют лишь самые крупномасштабные пульсации, за-
тухающие на расстояниях порядка величины размеров (поперечных) вихревой области, как раз играющих в данном случае роль основного масштаба турбулентности. На расстояниях, больших этих размеров, турбулентность практически отсутствует и движение можно считать ламинарным.
Мы видели, что диссипация энергии при турбулентном движении связана с наиболее мелкомасштабными пульсациями; крупномасштабные движения заметной диссипацией не сопровождаются, с чем и связана возможность применения к ним уравнения Эйлера. Ввиду сказанного выше мы приходим к существенному результату, что диссипация энергии происходит в основном лишь в области вихревого турбулентного движения и практически не имеет места вне этой области.
Имея в виду все эти особенности вихревого и безвихревого турбулентного движений, мы будем в дальнейшем для краткости называть область вихревого турбулентного движения просто областью турбулентного движения или турбулентной областью. В следующих параграфах будет рассмотрена форма этой области для различных случаев.
Турбулентная область должна быть ограничена с какой-нибудь стороны частью поверхности обтекаемого жидкостью тела. Линию, ограничивающую эту часть поверхности тела, называют линией отрыва. От нее отходит поверхность раздела между областью турбулентности и остальным объемом жидкости. Самое образование турбулентной области при обтекании тела называют явлением отрыва.
Форма турбулентной области определяется свойствами движения в основном объеме жидкости (т. е. не в непосредственной близости от поверхности тела). Не существующая пока полная теория турбулентности должна была бы дать принципиальную возможность определения этой формы с помощью уравнений движения идеальной жидкости, если задано положение линии отрыва на поверхности тела. Действительное же положение линии отрыва определяется свойствами движения в непосредственной близости поверхности тела (в так называемом пограничном слое), где существенную роль играет вязкость жидкости (см. § 40).
Говоря (в следующих параграфах) о свободной границе турбулентной области, мы будем подразумевать, естественно, ее усредненное по времени положение. Мгновенное же положение границы представляет собой очень нерегулярную поверхность; эти нерегулярные искажения и их изменение со временем связаны в основном с крупномасштабными пульсациями и соответственно простираются в глубину на расстояния, сравнимые с основным масштабом турбулентности. Нерегулярное движение граничной поверхности приводит к тому, что фиксированная в пространстве точка потока (не слишком удаленная от среднего положения поверхности) будет оказываться попеременно по ту или другую сторону границы. При наблюдении картины движения в этой точке будут обнаруживаться попеременные периоды наличия или отсутствия мелкомасштабной турбулентности1).