
- •§ 1. Уравнение непрерывности
- •§ Pvrff,
- •§ 2. Уравнение Эйлера
- •§ 3. Гидростатика
- •§ 4. Условие отсутствия конвекции
- •§ 5. Уравнение Бернулли
- •§ 6. Поток энергии
- •§ 7. Поток импульса
- •§ 8. Сохранение циркуляции скорости
- •§ 9. Потенциальное движение
- •§ 10. Несжимаемая жидкость
- •§ 12. Гравитационные волны
- •§ 13. Внутренние волны в несжимаемой жидкости
- •§ 14. Волны во вращающейся жидкости
- •Глава II
- •§ 15. Уравнения движения вязкой жидкости
- •§ 16. Диссипация энергии в несжимаемой жидкости
- •§17. Течение по трубе
- •§ 18. Движение жидкости между вращающимися цилиндрами
- •§ 19. Закон подобия
- •§ 20. Течение при малых числах Рейнольдса
- •§ 21. Ламинарный след
- •§ 22. Вязкость суспензий
- •§ 23. Точные решения уравнений движения вязкой жидкости
- •§ 24. Колебательное движение в вязкой жидкости
- •§ 25. Затухание гравитационных волн
- •Глава III
- •§ 26. Устойчивость стационарного движения жидкости
- •§ 27. Устойчивость вращательного движения жидкости
- •§ 29. Неустойчивость тангенциальных разрывов
- •§ 30. Квазипериодическое движение и синхронизация частот3)
- •§ 31. Странный аттрактор
- •§ 32. Переход к турбулентности путем удвоения периодов
- •§ 33. Развитая турбулентность
- •§ 34. Корреляционные функции скоростей
- •§ 35. Турбулентная область и явление отрыва
- •§ 36. Турбулентная струя
- •§ 37. Турбулентный след
- •§ 38. Теорема Жуковского
- •Глава IV
- •§ 39. Ламинарный пограничный слой
- •1. Определить толщину пограничного слоя вблизи критической точки (см. § 10) на обтекаемом жидкостью теле.
- •2. Определить движение в пограничном слое при конфузорном (см. § 23) течении между двумя пересекающимися плоскостями (к.. Pohlhausen, 1921).
- •§ 41. Устойчивость движения в ламинарном пограничном слое
- •2) Эта аналогия указана а в. Тимофеевым (1979) и а а Андроновым и а л. Фабрикантом (1979); ниже мы следуем изложению а. В. Тимофеева.
- •8) При V"(y) шг 0 уравнение (41,2) вообще не имеет решений, удовлетворяющих необходимым граничным условиям.
- •§ 42. Логарифмический профиль скоростей
- •§ 43. Турбулентное течение в трубах
- •§ 44. Турбулентный пограничный слой
- •§ 45. Кризис сопротивления
- •§ 46. Хорошо обтекаемые тела
- •§ 47. Индуктивное сопротивление
- •§ 48. Подъёмная сила тонкого крыла
- •S2(£)-Citt) 6-«
- •Глава V
- •§ 49. Общее уравнение переноса тепла
- •§ 50. Теплопроводность в несжимаемой жидкости
- •§ 51. Теплопроводность в неограниченной среде
- •§ 52. Теплопроводность в ограниченной среде
- •§ 53. Закон подобия для теплопередачи
- •§ 54. Теплопередача в пограничном слое
- •ВгТт « - у«р-
- •§ 55. Нагревание тела в движущейся жидкости
- •§ 56. Свободная конвекция
- •§ 57. Конвективная неустойчивость неподвижной жидкости
- •§ 58. Уравнения гидродинамики для жидкой смеси
- •§ 59. Коэффициенты диффузии и термодиффузии
- •§ 60. Диффузия взвешенных в жидкости частиц
- •Глава VII
- •§ 61. Формула Лапласа
- •§ 62. Капиллярные волны
- •§ 63. Влияние адсорбированных пленок на движение жидкости
- •Глава VIII
- •§ 64. Звуковые волны
- •§ 66. Энергия и импульс звуковых волн
- •§ 66. Отражение и преломление звуковых волн
- •§ 67. Геометрическая акустика
- •§ 68. Распространение звука в движущейся среде
- •§ 69. Собственные колебания
- •§ 70. Сферические волны
- •§71. Цилиндрические волны
- •§ 72. Общее решение волнового уравнения
- •Ctjc42-(X-q2- (*/-г,)2'
- •§ 73. Боковая волна
- •§ 74. Излучение звука
- •§ 75. Возбуждение звука турбулентностью
- •V 1г' 4я j дхидх1к
- •§ 76. Принцип взаимности
- •§ 77. Распространение звука по трубке
- •§ 78. Рассеяние звука
- •§ 79. Поглощение звука
- •4. Определить дополнительное поглощение звука, распространяющегося в смеси двух веществ, связанное с диффузией (и. Г. Шапошников и 3. А Гольдберг, 1952).
- •§ 80. Акустическое течение
- •§ 81. Вторая вязкость
- •Глава IX
- •§ 82. Распространение возмущений в потоке сжимаемого газа
- •2) Во избежание недоразумений оговорим, что если перед обтекаемым телом возникает ударная волна, то эта область несколько увеличивается (см. § 122).
- •§ 83. Стационарный поток сжимаемого газа
- •§ 84. Поверхности разрыва
- •§ 85. Ударная адиабата
- •2) Такой выбор системы координат будет подразумеваться везде в этой главе, за исключением § 92.
- •§ 86. Ударные волны слабой интенсивности
- •§ 87] Направление изменения величин в ударной волне 463
- •§ 87. Направление изменения величин в ударной волне
- •§ 88. Эволюционность ударных волн
- •§ 89. Ударные волны в политропном газе
- •1. Получить формулу
- •§ 90. Гофрировочная неустойчивость ударных волн
- •2) Сравните с аналогичной ситуацией для тангенциальных разрывов — задача 2 § 84.
- •1) Эта неустойчивость тоже была указана с. П. Дьяковым (1954); правильное значение нижней границы в (90,17) найдено в. М. Конторовичем (1957).
- •§ 91. Распространение ударной волны по трубе
- •§ 92. Косая ударная волна
- •§ 93. Ширина ударных волн
- •§ 94. Ударные волны в релаксирующей среде
- •§ 96. Слабые разрывы
- •Глава X
- •§ 97. Истечение газа через сопло
- •§ 98. Вязкое движение сжимаемого газа по трубе
- •§ 99. Одномерное автомодельное движение
- •5. Определить движение в изотермической автомодельной волне разрежения.
- •§ 100. Разрывы в начальных условиях
- •§ 101. Одномерные бегущие волны
- •§ 102. Образование разрывов в звуковой волне
- •§ 103. Характеристики
- •§ 104. Инварианты Римана
- •§ 105. Произвольное одномерное движение сжимаемого газа
- •§ 106. Задача о сильном взрыве
- •§ 107. Сходящаяся сферическая ударная волна
- •2) Эта задача была рассмотрена независимо Гудерлеем (о. Guderleu, 1942) и л. Д. Ландау и к. П. Станюковичем (1944, опубликовано в 1955).
- •§ 108. Теория «мелкой воды»
- •Глава XI
- •§ 109. Волна разрежения
- •§ 111. Пересечение ударных волн с твердой поверхностью
- •§ 112. Сверхзвуковое обтекание угла
- •§ 113. Обтекание конического острия
- •Глава XII
- •§ 114. Потенциальное движение сжимаемого газа
- •§ 115. Стационарные простые волны
- •§ 116. Уравнение Чаплыгина (общая задача
- •§ 117. Характеристики плоского стационарного течения
- •§ 118. Уравнение Эйлера — Трикоми. Переход через звуковую скорость
- •§1191 Решение уравнения эйлера —трикоми 619
- •§ 119. Решения уравнения Эйлера — Трикоми вблизи неособых точек звуковой поверхности
- •§ 120. Обтекание со звуковой скоростью
- •§ 121. Отражение слабого разрыва от звуковой линии
- •Глава XIII
- •§ 122. Образование ударных воли при сверхзвуковом обтекании тел
- •§ 123. Сверхзвуковое обтекание заостренного тела
- •§ 124. Дозвуковое обтекание тонкого крыла
- •§ 125. Сверхзвуковое обтекание крыла
- •§ 126. Околозвуковой закон подобия
- •§ 127. Гиперзвуковой закон подобия
- •Глава XIV
- •§ 128. Медленное горение
- •§ 129. Детонация
- •§ 130. Распространение детонационной волны
- •§ 131. Соотношение между различными режимами горения
- •§ 132. Конденсационные скачки
- •Глава XV
- •§ 133. Тензор энергии-импульса жидкости
- •§ 134. Релятивистские гидродинамические уравнения
- •§ 135. Ударные волны в релятивистской гидродинамике
- •§ 136. Релятивистские уравнения движения вязкой и теплопроводной среды
- •§ 137. Основные свойства сверхтекучей жидкости
- •§ 138. Термомеханический эффект
- •§ 139. Уравнения гидродинамики сверхтекучей жидкости
- •§ 140. Диссипативные процессы в сверхтекучей жидкости
- •§ 141. Распространение звука в сверхтекучей жидкости
§ 29. Неустойчивость тангенциальных разрывов
»)
См. Куликовский
А.
Г.
—
Прикл. мат. и мех., 1968, т. 32, с. 112.
другому; поверхность раздела между этими двумя слоями жидкости была бы поверхностью тангенциального разрыва, на которой скорость жидкости (направленная по касательной к поверхности) испытывала бы скачок (Н. Heltnholtz, 1868; W. Kelvin,. 1871). В дальнейшем мы увидим, к какой картине фактически осуществляющегося движения приводит эта неустойчивость (§ 35); здесь же проведем доказательство сделанного утверждения.
Рассматривая небольшой участок поверхности разрыва и течение жидкости вблизи него, мы можем считать этот участок плоским, а скорости Vi и \2 жидкости по обеим его сторонам постоянными. Не ограничивая общности, можно считать, что-одна из этих скоростей равна нулю; этого всегда можно добиться соответствующим выбором системы координат. Пусть v2 = О, a Vi обозначим просто как v; направление v выберем в- качестве оси х, а ось z направим по нормали к поверхности.
Пусть поверхность разрыва испытывает слабое возмущение («рябь»), при котором все величины — координаты точек самой поверхности, давление и скорость жидкости — являются периодическими функциями, пропорциональными e^kx~at). Рассмотрим жидкость с той стороны от поверхности разрыва, где ее скорость равна v, и обозначим посредством v' малое изменение скорости при возмущении. Согласно уравнениям (26,4) (с постоянным Vo = v и v = 0) имеем для возмущения v' следующую систему.-
divv' = 0, ^l + (vv)v'= v"'
dt 1 v v' * p *
Поскольку v направлено по оси х, то второе уравнение можно-переписать в виде
Если применить к обеим его сторонам операцию div, то в силу первого уравнения мы получим слева нуль, так что р' должно^ удовлетворять уравнению Лапласа
Ар' = 0. (29,2)
Пусть t, = t,(x,t) есть смещение вдоль оси г точек поверхности разрыва при возмущении. Производная dt,/dt есть скорость изменения координаты £ поверхности при заданной координате х. Поскольку нормальная к поверхности разрыва компонента скорости жидкости равна скорости перемещения самой поверхности, то в требуемом приближении имеем:
(для v'z надо, конечно, брать ее значение на самой поверхности)
Будем искать р' в виде
р' = f(z)eiikx-at\ Подстановка в (29,2) дает для f(z) уравнение
—b2f = 0 dz2 R ' U'
откуда / = const е±кг. Пусть пространство с рассматриваемой стороны поверхности разрыва (сторона /) соответствует положительным г. Тогда мы должны взять / = const е~кг, так что
р\ = const е< <**-<■>'> е-**. (29,4)
Подставляя это выражение в г-компоненту уравнения (29,1), найдем'):
<-1Р1£1-л)
• (ад
Смещение £ тоже ищем в виде, пропорциональном такому же экспоненциальному множителю е"**-40'', и получаем из (29,3):
v'2 = i£(kv — со).
Вместе с (29,5) это дает
Р\ SPl
(kv-W)U. (29,6)
Давление по другую сторону поверхности выразится такой же формулой, в которой надо теперь положить v = 0, и, кроме того, изменить общий знак (соответственно тому, что в этой области г < 0 и все величины должны быть пропорциональны екг, а не е~кг). Таким образом,
Pi-C-^. (29,7)
Мы пишем различные плотности pi и р2, имея в виду охватить также и случай, когда речь идет о границе раздела между двумя различными несмешивающимися жидкостями.
Наконец, из условия равенства давлений р\ и р'г на поверхности разрыва получаем:
р, (kv — со)2 = — р2со2, откуда находим искомую зависимость между со и Л:
<o
=
kv
P'^VV'P2
■ (29,8)
')
Случай kv
=
(о,
в
принципе возможный, нас не интересует,
так как неустойчивость может быть
связана только с комплексными, а не
вещественными частотами ш.
Мы видим, что со оказывается комплексной величиной, причем всегда имеются со с положительной мнимой частью. Таким образом, тангенциальные разрывы неустойчивы — уже по отношению к бесконечно малым возмущениям ■). В таком виде этот результат относится к сколь угодно малой вязкости. В этом случае не имеет смысла различать неустойчивость сносового типа от абсолютной неустойчивости, поскольку с увеличением k мнимая часть со неограниченно возрастает, и потому коэффициент усиления возмущения при его сносе может быть сколь угодно велик.
При учете конечной вязкости тангенциальный разрыв теряет свою резкость; изменение скорости от одного до другого значения происходит в слое конечной толщины. Вопрос об устойчивости такого движения в математическом отношении вполне аналогичен вопросу об устойчивости в ламинарном пограничном слое с перегибом в профиле скоростей (§ 41). Экспериментальные данные и численные расчеты показывают, что в данном случае неустойчивость наступает очень рано, возможно даже, что всегда 2).