- •§ 1. Уравнение непрерывности
 - •§ Pvrff,
 - •§ 2. Уравнение Эйлера
 - •§ 3. Гидростатика
 - •§ 4. Условие отсутствия конвекции
 - •§ 5. Уравнение Бернулли
 - •§ 6. Поток энергии
 - •§ 7. Поток импульса
 - •§ 8. Сохранение циркуляции скорости
 - •§ 9. Потенциальное движение
 - •§ 10. Несжимаемая жидкость
 - •§ 12. Гравитационные волны
 - •§ 13. Внутренние волны в несжимаемой жидкости
 - •§ 14. Волны во вращающейся жидкости
 - •Глава II
 - •§ 15. Уравнения движения вязкой жидкости
 - •§ 16. Диссипация энергии в несжимаемой жидкости
 - •§17. Течение по трубе
 - •§ 18. Движение жидкости между вращающимися цилиндрами
 - •§ 19. Закон подобия
 - •§ 20. Течение при малых числах Рейнольдса
 - •§ 21. Ламинарный след
 - •§ 22. Вязкость суспензий
 - •§ 23. Точные решения уравнений движения вязкой жидкости
 - •§ 24. Колебательное движение в вязкой жидкости
 - •§ 25. Затухание гравитационных волн
 - •Глава III
 - •§ 26. Устойчивость стационарного движения жидкости
 - •§ 27. Устойчивость вращательного движения жидкости
 - •§ 29. Неустойчивость тангенциальных разрывов
 - •§ 30. Квазипериодическое движение и синхронизация частот3)
 - •§ 31. Странный аттрактор
 - •§ 32. Переход к турбулентности путем удвоения периодов
 - •§ 33. Развитая турбулентность
 - •§ 34. Корреляционные функции скоростей
 - •§ 35. Турбулентная область и явление отрыва
 - •§ 36. Турбулентная струя
 - •§ 37. Турбулентный след
 - •§ 38. Теорема Жуковского
 - •Глава IV
 - •§ 39. Ламинарный пограничный слой
 - •1. Определить толщину пограничного слоя вблизи критической точки (см. § 10) на обтекаемом жидкостью теле.
 - •2. Определить движение в пограничном слое при конфузорном (см. § 23) течении между двумя пересекающимися плоскостями (к.. Pohlhausen, 1921).
 - •§ 41. Устойчивость движения в ламинарном пограничном слое
 - •2) Эта аналогия указана а в. Тимофеевым (1979) и а а Андроновым и а л. Фабрикантом (1979); ниже мы следуем изложению а. В. Тимофеева.
 - •8) При V"(y) шг 0 уравнение (41,2) вообще не имеет решений, удовлетворяющих необходимым граничным условиям.
 - •§ 42. Логарифмический профиль скоростей
 - •§ 43. Турбулентное течение в трубах
 - •§ 44. Турбулентный пограничный слой
 - •§ 45. Кризис сопротивления
 - •§ 46. Хорошо обтекаемые тела
 - •§ 47. Индуктивное сопротивление
 - •§ 48. Подъёмная сила тонкого крыла
 - •S2(£)-Citt) 6-«
 - •Глава V
 - •§ 49. Общее уравнение переноса тепла
 - •§ 50. Теплопроводность в несжимаемой жидкости
 - •§ 51. Теплопроводность в неограниченной среде
 - •§ 52. Теплопроводность в ограниченной среде
 - •§ 53. Закон подобия для теплопередачи
 - •§ 54. Теплопередача в пограничном слое
 - •ВгТт « - у«р-
 - •§ 55. Нагревание тела в движущейся жидкости
 - •§ 56. Свободная конвекция
 - •§ 57. Конвективная неустойчивость неподвижной жидкости
 - •§ 58. Уравнения гидродинамики для жидкой смеси
 - •§ 59. Коэффициенты диффузии и термодиффузии
 - •§ 60. Диффузия взвешенных в жидкости частиц
 - •Глава VII
 - •§ 61. Формула Лапласа
 - •§ 62. Капиллярные волны
 - •§ 63. Влияние адсорбированных пленок на движение жидкости
 - •Глава VIII
 - •§ 64. Звуковые волны
 - •§ 66. Энергия и импульс звуковых волн
 - •§ 66. Отражение и преломление звуковых волн
 - •§ 67. Геометрическая акустика
 - •§ 68. Распространение звука в движущейся среде
 - •§ 69. Собственные колебания
 - •§ 70. Сферические волны
 - •§71. Цилиндрические волны
 - •§ 72. Общее решение волнового уравнения
 - •Ctjc42-(X-q2- (*/-г,)2'
 - •§ 73. Боковая волна
 - •§ 74. Излучение звука
 - •§ 75. Возбуждение звука турбулентностью
 - •V 1г' 4я j дхидх1к
 - •§ 76. Принцип взаимности
 - •§ 77. Распространение звука по трубке
 - •§ 78. Рассеяние звука
 - •§ 79. Поглощение звука
 - •4. Определить дополнительное поглощение звука, распространяющегося в смеси двух веществ, связанное с диффузией (и. Г. Шапошников и 3. А Гольдберг, 1952).
 - •§ 80. Акустическое течение
 - •§ 81. Вторая вязкость
 - •Глава IX
 - •§ 82. Распространение возмущений в потоке сжимаемого газа
 - •2) Во избежание недоразумений оговорим, что если перед обтекаемым телом возникает ударная волна, то эта область несколько увеличивается (см. § 122).
 - •§ 83. Стационарный поток сжимаемого газа
 - •§ 84. Поверхности разрыва
 - •§ 85. Ударная адиабата
 - •2) Такой выбор системы координат будет подразумеваться везде в этой главе, за исключением § 92.
 - •§ 86. Ударные волны слабой интенсивности
 - •§ 87] Направление изменения величин в ударной волне 463
 - •§ 87. Направление изменения величин в ударной волне
 - •§ 88. Эволюционность ударных волн
 - •§ 89. Ударные волны в политропном газе
 - •1. Получить формулу
 - •§ 90. Гофрировочная неустойчивость ударных волн
 - •2) Сравните с аналогичной ситуацией для тангенциальных разрывов — задача 2 § 84.
 - •1) Эта неустойчивость тоже была указана с. П. Дьяковым (1954); правильное значение нижней границы в (90,17) найдено в. М. Конторовичем (1957).
 - •§ 91. Распространение ударной волны по трубе
 - •§ 92. Косая ударная волна
 - •§ 93. Ширина ударных волн
 - •§ 94. Ударные волны в релаксирующей среде
 - •§ 96. Слабые разрывы
 - •Глава X
 - •§ 97. Истечение газа через сопло
 - •§ 98. Вязкое движение сжимаемого газа по трубе
 - •§ 99. Одномерное автомодельное движение
 - •5. Определить движение в изотермической автомодельной волне разрежения.
 - •§ 100. Разрывы в начальных условиях
 - •§ 101. Одномерные бегущие волны
 - •§ 102. Образование разрывов в звуковой волне
 - •§ 103. Характеристики
 - •§ 104. Инварианты Римана
 - •§ 105. Произвольное одномерное движение сжимаемого газа
 - •§ 106. Задача о сильном взрыве
 - •§ 107. Сходящаяся сферическая ударная волна
 - •2) Эта задача была рассмотрена независимо Гудерлеем (о. Guderleu, 1942) и л. Д. Ландау и к. П. Станюковичем (1944, опубликовано в 1955).
 - •§ 108. Теория «мелкой воды»
 - •Глава XI
 - •§ 109. Волна разрежения
 - •§ 111. Пересечение ударных волн с твердой поверхностью
 - •§ 112. Сверхзвуковое обтекание угла
 - •§ 113. Обтекание конического острия
 - •Глава XII
 - •§ 114. Потенциальное движение сжимаемого газа
 - •§ 115. Стационарные простые волны
 - •§ 116. Уравнение Чаплыгина (общая задача
 - •§ 117. Характеристики плоского стационарного течения
 - •§ 118. Уравнение Эйлера — Трикоми. Переход через звуковую скорость
 - •§1191 Решение уравнения эйлера —трикоми 619
 - •§ 119. Решения уравнения Эйлера — Трикоми вблизи неособых точек звуковой поверхности
 - •§ 120. Обтекание со звуковой скоростью
 - •§ 121. Отражение слабого разрыва от звуковой линии
 - •Глава XIII
 - •§ 122. Образование ударных воли при сверхзвуковом обтекании тел
 - •§ 123. Сверхзвуковое обтекание заостренного тела
 - •§ 124. Дозвуковое обтекание тонкого крыла
 - •§ 125. Сверхзвуковое обтекание крыла
 - •§ 126. Околозвуковой закон подобия
 - •§ 127. Гиперзвуковой закон подобия
 - •Глава XIV
 - •§ 128. Медленное горение
 - •§ 129. Детонация
 - •§ 130. Распространение детонационной волны
 - •§ 131. Соотношение между различными режимами горения
 - •§ 132. Конденсационные скачки
 - •Глава XV
 - •§ 133. Тензор энергии-импульса жидкости
 - •§ 134. Релятивистские гидродинамические уравнения
 - •§ 135. Ударные волны в релятивистской гидродинамике
 - •§ 136. Релятивистские уравнения движения вязкой и теплопроводной среды
 - •§ 137. Основные свойства сверхтекучей жидкости
 - •§ 138. Термомеханический эффект
 - •§ 139. Уравнения гидродинамики сверхтекучей жидкости
 - •§ 140. Диссипативные процессы в сверхтекучей жидкости
 - •§ 141. Распространение звука в сверхтекучей жидкости
 
§ 25. Затухание гравитационных волн
Рассуждения, аналогичные вышеизложенным, могут быть проведены по поводу распределения скоростей вблизи свободной поверхности жидкости. Рассмотрим колебательное движение, происходящее у поверхности жидкости (например, гравитационные волны). Предположим, что выполняются условия (24,11), в которых теперь роль размеров / играет длина волны X:
Х2ш> v, а «Я (25,1)
{а — амплитуда волны, со — ее частота). Тогда можно утверждать, что решение будет вихревым лишь в тонком слое у поверхности жидкости, а в основном ее объеме движение будет потенциальным — таким, каким оно было бы у идеальной жидкости.
Движение вязкой жидкости должно удовлетворять у свободной поверхности граничным условиям (15,16), требующим исчезновения определенных комбинаций производных от скорости по координатам. Движение же, получающееся в результате решения уравнений гидродинамики идеальной жидкости, этому уелоьию не удовлетворяет. Подобно тому как это было сделано в предыдущем параграфе для скорости vy, мы можем заключить, что в тонком слое у поверхности жидкости соответствующие производные скорости будут быстро уменьшаться. Существенно отметить, что градиент скорости не будет при этом аномально большим, как это имело место вблизи твердой поверхности.
Вычислим диссипацию энергии в гравитационной волне. Здесь надо говорить не о диссипации кинетической энергии, а о диссипации механической энергии £Мех, включающей в себя наряду с кинетической также и потенциальную энергию в поле тяжести. Ясно, однако, что на обусловленную процессами внутреннего трения в жидкости диссипацию энергии не может влиять факт наличия или отсутствия поля тяжести. Поэтому Ёмех определяется той же формулой (16,3):
При вычислении этого интеграла для гравитационной волны надо заметить, что поскольку объем поверхностного слоя вихревого движения мал, а градиент скорости в нем не аномально велик, фактом наличия этого слоя можно пренебречь, в противоположность тому, что мы имели в случае колебаний твердой поверхности. Другими словами, интегрирование должно производиться по всему объему жидкости, в котором, как мы видели, жидкость движется как идеальная.
Но движение в гравитационной волне в идеальной жидкости было уже нами определено в § 12. Это движение потенциально, и потому
dv. дгф dvk дхк dxh dxt дх( '
так что
Потенциал <р имеет вид
ф = ф0 cos (kx — at + а) екг.
Нас интересует, конечно, не мгновенное, а среднее по времен» значение диссипируемой энергии. Замечая, что средние значения квадратов косинуса и синуса одинаковы, получим:
JLx = -8ii*4$i?dV. (25,2)
Что касается самой энергии гравитационной волны, то для ее вычисления можно воспользоваться известным из механики обстоятельством, что у всякой системы, совершающей малые колебания (колебания с малой амплитудой), средняя кинетиче* екая и потенциальная энергии равны друг другу. На этом основании можно написать Емех просто как удвоенную кинетическую энергию:
откуда
Ёмех = 2рй2\ф2^. (25,3)
Затухание волн удобно характеризовать коэффициентом затухания у, определенным как отношение
Y = |IMexl/2£. (25,4)
С течением времени энергия волны падает по закону Е = = const e~2yt\ что касается амплитуды волны, то, поскольку энергия пропорциональна ее квадрату, закон ее уменьшения со временем определяется множителем е~у*. С помощью (25,2—3) находим:
V = 2v62. (25,5)
	 
		ж-.	(25,6)
2vw
Y = -?
Задачи
1. Определить коэффициент затухания длинных гравитационных волн, распространяющихся в канале постоянного сечения; частота предполагается настолько большой, что Vv/co мало по сравнению с глубиной жидкости в канале и его шириной.
Решение. Основная диссипация энергии будет происходить в пристеночном слое жидкости, где скорость меняется от нуля на самой стенке до значения о =» vae~m> которое она имеет в волне Средняя диссипация энергии (отнесенная к единице длины канала) равна согласно (24,14)
VrjPco;
2 л/2
I — длина той части контура сечения канала, вдоль* которой он соприкасается с жидкостью. Средняя_же энергия жидкости (тоже отнесенная к единице длины канала) равна Spv2 = Sp | i>o |*/2 (S — площадь сечения жидкости в канале). Коэффициент затухания равен
V — т=—- Vvffl
2 У7 S
Так, для канала прямоугольного сечения (ширина о, глубина жидкости ft)
2А + а /— 2 л/2 ah
2. Определить движение в гравитационной волне на жидкости с большой
вязкостью (\'$3(0?bs).
Решение. Приведенное в тексте вычисление коэффициента затухания применимо только в случаях, когда этот коэффициент мал (v < (в), так что» движение можно рассматривать в первом приближении как движение идеальной жидкости. При произвольной вязкости ищем решение уравнений движения
dvx _ ( d'vx d2vx \ 1 др dt V V дх2 ~*~ дг2 ) р дх '
dvz _ / d2vz д2уг \ 1 др
_VV дх2 + dz2 ) р dz g'
dt
dvx dvz _ 0
дх дг
зависящее от г и х как е~'ч>,ш* и затухающее с z по направлению в глубь, жидкости (г > 0). Получаем:
	 
		Vx
		=
		е-ш+л*(Аекг
		+
		Ветг\
		Vz==e-lai+ikx
		(—iAekz-i-^
		Ветг), 
		P_
		=
		e~i»t+lk**Aeb*_gZt
		гдет=
		дЛ2-/-^-
р	k	V	v
а>
= е "~ " —г- ле~ — вг. где т= л. / я* — i
Граничные условия на поверхности жидкости:
. „ dvz . / dvt , dv, \
(при z —t). Во втором из этих условий можно сразу написать 2 = 0 вместо-г = £• Первое же дифференцируем предварительно по г и пишем gvz вместо ц dtjdt, после чего полагаем 2 = 0. Из условия совместности получающихся таким образом двух однородных уравнений для А и В получаем:
(1>
Это уравнение определяет зависимость ю от волнового вектора к. Пр_л этом* со является комплексной величиной; ее действительная часть определяет частоту колебаний, а мнимая — коэффициент затухания. Физический смысл имеют те из решений уравнения (1), мнимая часть которых отрицательна (соответственно затуханию волны); таковыми являются только два из корней уравнения (2). Если \к2 < У'gk (условие (25,1)), то коэффициент затухания мал и (2) дает приближенно и = ± л/gk — i • 2vk2 — известный уже нам результат. В противоположном предельном случае vfc2»Vgk уравнение (1) имеет два чисто мнимых корня, соответствующих чисто затухающему апериодическому движению. Один из корней есть
—
а другой значительно больше (порядка vft2) и поэтому не интересен (соответствующее ему движение быстро затухает).
