
- •§ 1. Уравнение непрерывности
- •§ Pvrff,
- •§ 2. Уравнение Эйлера
- •§ 3. Гидростатика
- •§ 4. Условие отсутствия конвекции
- •§ 5. Уравнение Бернулли
- •§ 6. Поток энергии
- •§ 7. Поток импульса
- •§ 8. Сохранение циркуляции скорости
- •§ 9. Потенциальное движение
- •§ 10. Несжимаемая жидкость
- •§ 12. Гравитационные волны
- •§ 13. Внутренние волны в несжимаемой жидкости
- •§ 14. Волны во вращающейся жидкости
- •Глава II
- •§ 15. Уравнения движения вязкой жидкости
- •§ 16. Диссипация энергии в несжимаемой жидкости
- •§17. Течение по трубе
- •§ 18. Движение жидкости между вращающимися цилиндрами
- •§ 19. Закон подобия
- •§ 20. Течение при малых числах Рейнольдса
- •§ 21. Ламинарный след
- •§ 22. Вязкость суспензий
- •§ 23. Точные решения уравнений движения вязкой жидкости
- •§ 24. Колебательное движение в вязкой жидкости
- •§ 25. Затухание гравитационных волн
- •Глава III
- •§ 26. Устойчивость стационарного движения жидкости
- •§ 27. Устойчивость вращательного движения жидкости
- •§ 29. Неустойчивость тангенциальных разрывов
- •§ 30. Квазипериодическое движение и синхронизация частот3)
- •§ 31. Странный аттрактор
- •§ 32. Переход к турбулентности путем удвоения периодов
- •§ 33. Развитая турбулентность
- •§ 34. Корреляционные функции скоростей
- •§ 35. Турбулентная область и явление отрыва
- •§ 36. Турбулентная струя
- •§ 37. Турбулентный след
- •§ 38. Теорема Жуковского
- •Глава IV
- •§ 39. Ламинарный пограничный слой
- •1. Определить толщину пограничного слоя вблизи критической точки (см. § 10) на обтекаемом жидкостью теле.
- •2. Определить движение в пограничном слое при конфузорном (см. § 23) течении между двумя пересекающимися плоскостями (к.. Pohlhausen, 1921).
- •§ 41. Устойчивость движения в ламинарном пограничном слое
- •2) Эта аналогия указана а в. Тимофеевым (1979) и а а Андроновым и а л. Фабрикантом (1979); ниже мы следуем изложению а. В. Тимофеева.
- •8) При V"(y) шг 0 уравнение (41,2) вообще не имеет решений, удовлетворяющих необходимым граничным условиям.
- •§ 42. Логарифмический профиль скоростей
- •§ 43. Турбулентное течение в трубах
- •§ 44. Турбулентный пограничный слой
- •§ 45. Кризис сопротивления
- •§ 46. Хорошо обтекаемые тела
- •§ 47. Индуктивное сопротивление
- •§ 48. Подъёмная сила тонкого крыла
- •S2(£)-Citt) 6-«
- •Глава V
- •§ 49. Общее уравнение переноса тепла
- •§ 50. Теплопроводность в несжимаемой жидкости
- •§ 51. Теплопроводность в неограниченной среде
- •§ 52. Теплопроводность в ограниченной среде
- •§ 53. Закон подобия для теплопередачи
- •§ 54. Теплопередача в пограничном слое
- •ВгТт « - у«р-
- •§ 55. Нагревание тела в движущейся жидкости
- •§ 56. Свободная конвекция
- •§ 57. Конвективная неустойчивость неподвижной жидкости
- •§ 58. Уравнения гидродинамики для жидкой смеси
- •§ 59. Коэффициенты диффузии и термодиффузии
- •§ 60. Диффузия взвешенных в жидкости частиц
- •Глава VII
- •§ 61. Формула Лапласа
- •§ 62. Капиллярные волны
- •§ 63. Влияние адсорбированных пленок на движение жидкости
- •Глава VIII
- •§ 64. Звуковые волны
- •§ 66. Энергия и импульс звуковых волн
- •§ 66. Отражение и преломление звуковых волн
- •§ 67. Геометрическая акустика
- •§ 68. Распространение звука в движущейся среде
- •§ 69. Собственные колебания
- •§ 70. Сферические волны
- •§71. Цилиндрические волны
- •§ 72. Общее решение волнового уравнения
- •Ctjc42-(X-q2- (*/-г,)2'
- •§ 73. Боковая волна
- •§ 74. Излучение звука
- •§ 75. Возбуждение звука турбулентностью
- •V 1г' 4я j дхидх1к
- •§ 76. Принцип взаимности
- •§ 77. Распространение звука по трубке
- •§ 78. Рассеяние звука
- •§ 79. Поглощение звука
- •4. Определить дополнительное поглощение звука, распространяющегося в смеси двух веществ, связанное с диффузией (и. Г. Шапошников и 3. А Гольдберг, 1952).
- •§ 80. Акустическое течение
- •§ 81. Вторая вязкость
- •Глава IX
- •§ 82. Распространение возмущений в потоке сжимаемого газа
- •2) Во избежание недоразумений оговорим, что если перед обтекаемым телом возникает ударная волна, то эта область несколько увеличивается (см. § 122).
- •§ 83. Стационарный поток сжимаемого газа
- •§ 84. Поверхности разрыва
- •§ 85. Ударная адиабата
- •2) Такой выбор системы координат будет подразумеваться везде в этой главе, за исключением § 92.
- •§ 86. Ударные волны слабой интенсивности
- •§ 87] Направление изменения величин в ударной волне 463
- •§ 87. Направление изменения величин в ударной волне
- •§ 88. Эволюционность ударных волн
- •§ 89. Ударные волны в политропном газе
- •1. Получить формулу
- •§ 90. Гофрировочная неустойчивость ударных волн
- •2) Сравните с аналогичной ситуацией для тангенциальных разрывов — задача 2 § 84.
- •1) Эта неустойчивость тоже была указана с. П. Дьяковым (1954); правильное значение нижней границы в (90,17) найдено в. М. Конторовичем (1957).
- •§ 91. Распространение ударной волны по трубе
- •§ 92. Косая ударная волна
- •§ 93. Ширина ударных волн
- •§ 94. Ударные волны в релаксирующей среде
- •§ 96. Слабые разрывы
- •Глава X
- •§ 97. Истечение газа через сопло
- •§ 98. Вязкое движение сжимаемого газа по трубе
- •§ 99. Одномерное автомодельное движение
- •5. Определить движение в изотермической автомодельной волне разрежения.
- •§ 100. Разрывы в начальных условиях
- •§ 101. Одномерные бегущие волны
- •§ 102. Образование разрывов в звуковой волне
- •§ 103. Характеристики
- •§ 104. Инварианты Римана
- •§ 105. Произвольное одномерное движение сжимаемого газа
- •§ 106. Задача о сильном взрыве
- •§ 107. Сходящаяся сферическая ударная волна
- •2) Эта задача была рассмотрена независимо Гудерлеем (о. Guderleu, 1942) и л. Д. Ландау и к. П. Станюковичем (1944, опубликовано в 1955).
- •§ 108. Теория «мелкой воды»
- •Глава XI
- •§ 109. Волна разрежения
- •§ 111. Пересечение ударных волн с твердой поверхностью
- •§ 112. Сверхзвуковое обтекание угла
- •§ 113. Обтекание конического острия
- •Глава XII
- •§ 114. Потенциальное движение сжимаемого газа
- •§ 115. Стационарные простые волны
- •§ 116. Уравнение Чаплыгина (общая задача
- •§ 117. Характеристики плоского стационарного течения
- •§ 118. Уравнение Эйлера — Трикоми. Переход через звуковую скорость
- •§1191 Решение уравнения эйлера —трикоми 619
- •§ 119. Решения уравнения Эйлера — Трикоми вблизи неособых точек звуковой поверхности
- •§ 120. Обтекание со звуковой скоростью
- •§ 121. Отражение слабого разрыва от звуковой линии
- •Глава XIII
- •§ 122. Образование ударных воли при сверхзвуковом обтекании тел
- •§ 123. Сверхзвуковое обтекание заостренного тела
- •§ 124. Дозвуковое обтекание тонкого крыла
- •§ 125. Сверхзвуковое обтекание крыла
- •§ 126. Околозвуковой закон подобия
- •§ 127. Гиперзвуковой закон подобия
- •Глава XIV
- •§ 128. Медленное горение
- •§ 129. Детонация
- •§ 130. Распространение детонационной волны
- •§ 131. Соотношение между различными режимами горения
- •§ 132. Конденсационные скачки
- •Глава XV
- •§ 133. Тензор энергии-импульса жидкости
- •§ 134. Релятивистские гидродинамические уравнения
- •§ 135. Ударные волны в релятивистской гидродинамике
- •§ 136. Релятивистские уравнения движения вязкой и теплопроводной среды
- •§ 137. Основные свойства сверхтекучей жидкости
- •§ 138. Термомеханический эффект
- •§ 139. Уравнения гидродинамики сверхтекучей жидкости
- •§ 140. Диссипативные процессы в сверхтекучей жидкости
- •§ 141. Распространение звука в сверхтекучей жидкости
§ 19. Закон подобия
При изучении движения вязких жидкостей можно получить ряд существенных результатов из простых соображений, связанных с размерностью различных физических величин. Рассмотрим какой-нибудь определенный тип движения. Этим типом может быть, например, движение тела определенной формы через жид-
*) Решение более сложной задачи о движении вязкой жидкости в узком зазоре между цилиндрами с параллельными, но эксцентрично расположенными осями, можно найти в книге: Кочин Н. Е., Кибель И. А., Розе Н. В. Теоретическая гидромеханика. — М.: Физматгиз, 1963, ч. 2, с. 534.
кость. Если тело не является шаром, то должно быть также указано, в каком направлении оно движется, например, движение эллипсоида в направлении его большой оси или в направлении его малой оси и т. п. Далее, речь может идти о течении жидкости по области, ограниченной стенками определенной формы (по трубе определенного сечения и т. п.).
Телами одинаковой формы мы называем при этом тела геометрически подобные, т. е. такие, которые могут быть получены друг из друга изменением всех линейных размеров в одинаковое число раз. Поэтому если форма тела задана, то для полного определения размеров тела достаточно указать какой-нибудь один из его линейных размеров (радиус шара или цилиндрической трубы, одну из полуосей эллипсоида вращения с заданным эксцентриситетом и т. п.).
Мы будем рассматривать сейчас стационарные движения. Поэтому если речь идет, например, об обтекании твердого тела жидкостью (ниже мы говорим для определенности о таком случае), то скорость натекающего потока жидкости должна быть постоянной. Жидкость мы будем предполагать несжимаемой.
Из параметров, характеризующих самую жидкость, в гидродинамические уравнения (уравнение Навье — Стокса) входит только кинематическая вязкость v = л/р; неизвестными же функциями, которые должны быть определены решением уравнений, являются при этом скорость v и отношение р/р давления р к постоянной р. Кроме того, течение жидкости зависит посредством граничных условий от формы и размеров движущегося в жидкости тела и от его скорости. Поскольку форма тела считается заданной, то его геометрические свойства определяются всего одним каким-нибудь линейным размером, который мы обозначим посредством /. Скорость же натекающего потока пусть будет и.
Таким образом, каждый тип движения жидкости определяется тремя параметрами: v, и, I. Эти величины обладают размерностями:
[v] = см2/с, [/] = см, [и] = см/с.
Легко убедиться в том, что из этих величин можно составить всего одну независимую безразмерную комбинацию, именно, 1и/\. Эту комбинацию называют числом Рейнольдса и обозначают посредством R:
Всякий другой безразмерный параметр можно написать в виде функции от R.
Будем измерять длины в единицах /, а скорости — в единицах и, т. е. введем безразмерные величины г/1, у/и. Поскольку единственным безразмерным параметром является число Рейнольдса, то ясно, что получающееся в результате решения гидродинамических уравнений распределение скоростей определяется функциями вида
v = «f(j-, R). (19,2)
Из этого выражения видно, что в двух различных течениях одного и того же типа (например, обтекание шаров различного радиуса жидкостями различной вязкости) скорости \/и являются одинаковыми функциями отношения г/1, если только числа Рейнольдса для этих течений одинаковы. Течения, которые могут быть получены друг из друга простым изменением масштаба измерения координат и скоростей, называются подобными. Таким образом, течения одинакового типа с одинаковым числом Рейнольдса подобны — так называемый закон подобия (О. Reynolds, 1883).
Аналогичную (19,2) формулу можно написать и для распределения давления в жидкости. Для этого надо составить из параметров v, /, и какую-нибудь величину с размерностью давления, деленного на р; в качестве такой величины выберем, например, и2. Тогда можно утверждать, что р/ри2 будет функцией от безразмерной переменной г/1 и безразмерного параметра R. Таким образом,
P = P"2/(-f. R). (19,3)
Наконец, аналогичные соображения применимы к величинам, характеризующим течение жидкости, но не являющимся уже функциями координат. Таковой является, например, действующая на обтекаемое тело сила сопротивления F. Именно, можно утверждать, что безразмерное отношение F к составленной из v, и, I, р величине размерности силы должно быть функцией только от числа Рейнольдса. В качестве указанной комбинации из v, и, I, р можно взять, например, произведение ри212. Тогда
F-=pu*Pf(R). (19,4)
Если влияние силы тяжести на движение существенно, то движение определяется не тремя, а четырьмя параметрами: /, и, v и ускорением силы тяжести g. Из этих параметров можно составить уже не одну, а две независимые безразмерные комбинации. В качестве их можно, например, выбрать число Рейнольдса и число Фруда, равное
¥=u2/lg. (19,5)
В формулах (19,2—4) функция / будет зависеть теперь не от одного, а от двух параметров (R и F), и течения являются подобными лишь при равенстве обоих этих чисел.
Наконец, скажем несколько слов о нестационарных движениях. Нестационарное движение определенного типа характеризуется наряду с величинами v, и, I еще значением какого-либо характерного для этого движения интервала времени т, определяющего изменение движения со временем. Так, при колебаниях погруженного в жидкость твердого тела определенной формы этим временем может являться период колебаний. Из четырех величин v, и, I, т можно опять составить не одну, а две независимые безразмерные величины, в качестве которых можно взять число Рейнольдса и число
S = «t//, (19,6)
называемое иногда числом Струхала (Strouhal). Подобие движений имеет место в таких случаях при равенстве обоих этих чисел.
Если колебания в жидкости возникают самопроизвольно (а не под влиянием заданной внешней вынуждающей силы), то для движения определенного типа число S будет определенной функцией числа R:
S = f(R).