
- •§ 1. Уравнение непрерывности
- •§ Pvrff,
- •§ 2. Уравнение Эйлера
- •§ 3. Гидростатика
- •§ 4. Условие отсутствия конвекции
- •§ 5. Уравнение Бернулли
- •§ 6. Поток энергии
- •§ 7. Поток импульса
- •§ 8. Сохранение циркуляции скорости
- •§ 9. Потенциальное движение
- •§ 10. Несжимаемая жидкость
- •§ 12. Гравитационные волны
- •§ 13. Внутренние волны в несжимаемой жидкости
- •§ 14. Волны во вращающейся жидкости
- •Глава II
- •§ 15. Уравнения движения вязкой жидкости
- •§ 16. Диссипация энергии в несжимаемой жидкости
- •§17. Течение по трубе
- •§ 18. Движение жидкости между вращающимися цилиндрами
- •§ 19. Закон подобия
- •§ 20. Течение при малых числах Рейнольдса
- •§ 21. Ламинарный след
- •§ 22. Вязкость суспензий
- •§ 23. Точные решения уравнений движения вязкой жидкости
- •§ 24. Колебательное движение в вязкой жидкости
- •§ 25. Затухание гравитационных волн
- •Глава III
- •§ 26. Устойчивость стационарного движения жидкости
- •§ 27. Устойчивость вращательного движения жидкости
- •§ 29. Неустойчивость тангенциальных разрывов
- •§ 30. Квазипериодическое движение и синхронизация частот3)
- •§ 31. Странный аттрактор
- •§ 32. Переход к турбулентности путем удвоения периодов
- •§ 33. Развитая турбулентность
- •§ 34. Корреляционные функции скоростей
- •§ 35. Турбулентная область и явление отрыва
- •§ 36. Турбулентная струя
- •§ 37. Турбулентный след
- •§ 38. Теорема Жуковского
- •Глава IV
- •§ 39. Ламинарный пограничный слой
- •1. Определить толщину пограничного слоя вблизи критической точки (см. § 10) на обтекаемом жидкостью теле.
- •2. Определить движение в пограничном слое при конфузорном (см. § 23) течении между двумя пересекающимися плоскостями (к.. Pohlhausen, 1921).
- •§ 41. Устойчивость движения в ламинарном пограничном слое
- •2) Эта аналогия указана а в. Тимофеевым (1979) и а а Андроновым и а л. Фабрикантом (1979); ниже мы следуем изложению а. В. Тимофеева.
- •8) При V"(y) шг 0 уравнение (41,2) вообще не имеет решений, удовлетворяющих необходимым граничным условиям.
- •§ 42. Логарифмический профиль скоростей
- •§ 43. Турбулентное течение в трубах
- •§ 44. Турбулентный пограничный слой
- •§ 45. Кризис сопротивления
- •§ 46. Хорошо обтекаемые тела
- •§ 47. Индуктивное сопротивление
- •§ 48. Подъёмная сила тонкого крыла
- •S2(£)-Citt) 6-«
- •Глава V
- •§ 49. Общее уравнение переноса тепла
- •§ 50. Теплопроводность в несжимаемой жидкости
- •§ 51. Теплопроводность в неограниченной среде
- •§ 52. Теплопроводность в ограниченной среде
- •§ 53. Закон подобия для теплопередачи
- •§ 54. Теплопередача в пограничном слое
- •ВгТт « - у«р-
- •§ 55. Нагревание тела в движущейся жидкости
- •§ 56. Свободная конвекция
- •§ 57. Конвективная неустойчивость неподвижной жидкости
- •§ 58. Уравнения гидродинамики для жидкой смеси
- •§ 59. Коэффициенты диффузии и термодиффузии
- •§ 60. Диффузия взвешенных в жидкости частиц
- •Глава VII
- •§ 61. Формула Лапласа
- •§ 62. Капиллярные волны
- •§ 63. Влияние адсорбированных пленок на движение жидкости
- •Глава VIII
- •§ 64. Звуковые волны
- •§ 66. Энергия и импульс звуковых волн
- •§ 66. Отражение и преломление звуковых волн
- •§ 67. Геометрическая акустика
- •§ 68. Распространение звука в движущейся среде
- •§ 69. Собственные колебания
- •§ 70. Сферические волны
- •§71. Цилиндрические волны
- •§ 72. Общее решение волнового уравнения
- •Ctjc42-(X-q2- (*/-г,)2'
- •§ 73. Боковая волна
- •§ 74. Излучение звука
- •§ 75. Возбуждение звука турбулентностью
- •V 1г' 4я j дхидх1к
- •§ 76. Принцип взаимности
- •§ 77. Распространение звука по трубке
- •§ 78. Рассеяние звука
- •§ 79. Поглощение звука
- •4. Определить дополнительное поглощение звука, распространяющегося в смеси двух веществ, связанное с диффузией (и. Г. Шапошников и 3. А Гольдберг, 1952).
- •§ 80. Акустическое течение
- •§ 81. Вторая вязкость
- •Глава IX
- •§ 82. Распространение возмущений в потоке сжимаемого газа
- •2) Во избежание недоразумений оговорим, что если перед обтекаемым телом возникает ударная волна, то эта область несколько увеличивается (см. § 122).
- •§ 83. Стационарный поток сжимаемого газа
- •§ 84. Поверхности разрыва
- •§ 85. Ударная адиабата
- •2) Такой выбор системы координат будет подразумеваться везде в этой главе, за исключением § 92.
- •§ 86. Ударные волны слабой интенсивности
- •§ 87] Направление изменения величин в ударной волне 463
- •§ 87. Направление изменения величин в ударной волне
- •§ 88. Эволюционность ударных волн
- •§ 89. Ударные волны в политропном газе
- •1. Получить формулу
- •§ 90. Гофрировочная неустойчивость ударных волн
- •2) Сравните с аналогичной ситуацией для тангенциальных разрывов — задача 2 § 84.
- •1) Эта неустойчивость тоже была указана с. П. Дьяковым (1954); правильное значение нижней границы в (90,17) найдено в. М. Конторовичем (1957).
- •§ 91. Распространение ударной волны по трубе
- •§ 92. Косая ударная волна
- •§ 93. Ширина ударных волн
- •§ 94. Ударные волны в релаксирующей среде
- •§ 96. Слабые разрывы
- •Глава X
- •§ 97. Истечение газа через сопло
- •§ 98. Вязкое движение сжимаемого газа по трубе
- •§ 99. Одномерное автомодельное движение
- •5. Определить движение в изотермической автомодельной волне разрежения.
- •§ 100. Разрывы в начальных условиях
- •§ 101. Одномерные бегущие волны
- •§ 102. Образование разрывов в звуковой волне
- •§ 103. Характеристики
- •§ 104. Инварианты Римана
- •§ 105. Произвольное одномерное движение сжимаемого газа
- •§ 106. Задача о сильном взрыве
- •§ 107. Сходящаяся сферическая ударная волна
- •2) Эта задача была рассмотрена независимо Гудерлеем (о. Guderleu, 1942) и л. Д. Ландау и к. П. Станюковичем (1944, опубликовано в 1955).
- •§ 108. Теория «мелкой воды»
- •Глава XI
- •§ 109. Волна разрежения
- •§ 111. Пересечение ударных волн с твердой поверхностью
- •§ 112. Сверхзвуковое обтекание угла
- •§ 113. Обтекание конического острия
- •Глава XII
- •§ 114. Потенциальное движение сжимаемого газа
- •§ 115. Стационарные простые волны
- •§ 116. Уравнение Чаплыгина (общая задача
- •§ 117. Характеристики плоского стационарного течения
- •§ 118. Уравнение Эйлера — Трикоми. Переход через звуковую скорость
- •§1191 Решение уравнения эйлера —трикоми 619
- •§ 119. Решения уравнения Эйлера — Трикоми вблизи неособых точек звуковой поверхности
- •§ 120. Обтекание со звуковой скоростью
- •§ 121. Отражение слабого разрыва от звуковой линии
- •Глава XIII
- •§ 122. Образование ударных воли при сверхзвуковом обтекании тел
- •§ 123. Сверхзвуковое обтекание заостренного тела
- •§ 124. Дозвуковое обтекание тонкого крыла
- •§ 125. Сверхзвуковое обтекание крыла
- •§ 126. Околозвуковой закон подобия
- •§ 127. Гиперзвуковой закон подобия
- •Глава XIV
- •§ 128. Медленное горение
- •§ 129. Детонация
- •§ 130. Распространение детонационной волны
- •§ 131. Соотношение между различными режимами горения
- •§ 132. Конденсационные скачки
- •Глава XV
- •§ 133. Тензор энергии-импульса жидкости
- •§ 134. Релятивистские гидродинамические уравнения
- •§ 135. Ударные волны в релятивистской гидродинамике
- •§ 136. Релятивистские уравнения движения вязкой и теплопроводной среды
- •§ 137. Основные свойства сверхтекучей жидкости
- •§ 138. Термомеханический эффект
- •§ 139. Уравнения гидродинамики сверхтекучей жидкости
- •§ 140. Диссипативные процессы в сверхтекучей жидкости
- •§ 141. Распространение звука в сверхтекучей жидкости
§ 140. Диссипативные процессы в сверхтекучей жидкости
Для учета диссипативных процессов в уравнениях гидродинамики сверхтекучей жидкости надо (как и в обычной гидродинамике) ввести в них дополнительные члены, линейные по пространственным производным скоростей и температуры. Вид этих членов может быть установлен однозначным образом исходя из требований, налагаемых законом возрастания энтропии и принципом симметрии кинетических коэффициентов Онсагера (И. М. Халатников, 1952).
Как и прежде, р и j — масса и импульс единицы объема жидкости. Уравнение непрерывности сохраняет свой вид (139,3). В уравнения же (139,4), (139,6—7) надо ввести дополнительные члены, которые напишем в их правых частях;
дП dHik dl4 -дТ+-Ьх—==—{ШЛ)
ж + v (4 + и) - - W. (140,2)
-|^ + divQ = -divQ'. (140,3)
Энтропийное же уравнение не имеет теперь вида уравнения сохранения (139,5); напротив, величины П', <p', Q' должны быть определены так, чтобы обеспечить возрастание энтропии. Для этого снова подставляем в уравнение сохранения энергии (140,3) производную dE0/dt, выраженную с помощью (139,9), после чего исключаем производные р, j, vs с помощью (139,3), (140,1—2). При этом подразумевается, что Q и П даются уже известными выражениями (139,11—12); поэтому сокращаются все члены, за исключением связанных с энтропией и с дис-сипативными величинами П', О/, <р'. В результате получим
') Полный вывод гидродинамических уравнений для смесей — см. книгу Халатникова И. М. Теория сверхтекучести. — М.: Наука, 1971, гл. XIII. Эти уравнения становятся неприменимыми при очень низких температурах, когда возникает квантовое вырождение элементарных возбуждений, связанных с атомами примеси.
уравнение
r{^+div(PSv„)}== - - div {Q' + pswq/ - (П'у„)} + Ф' div (psw) - П',76 -^f- (140,4)
k
(здесь снова w = v„ — vs).
Линейные по градиентам выражения величин IT, О/, ф', обеспечивающие возрастание энтропии, имеют вид1):
«.~4tf£+3?-4«..di".)-
— 6tkZi div (Psw) — 6/A£2 div v„, (140,5) 9, = g3div'Psw) + ?4divv„, (140,6)
Q' = — q>'Psw + (П'у„) - x (140,7)
(в Пг77 выделена комбинация производных от v„ с равным нулю следом — подобно тому, как это делается в обычной гидродинамике). При этом согласно принципу Онсагера должно быть
Si=U (140,8)
так что остается всего 5 независимых кинетических коэффициентов2).
Наконец, подставив выражения (140,5—7) в уравнение (140,4), после простых преобразований приведем его к виду
т{ЁЖ1 + 78™(рзУп-Т79Г)} = 80. (Н0,9)
где
+ 2£, div v„ div o,w + Ь (div v„)2 + £з (div psw)2 + -f (V7?. (140,10)
')
Здесь учитывается также и условие, что
вращение нормальной части жидкости
как целого (v„
=
[fir])
не
должно приводить к диссипации (ср. §
15).
По поводу изложенных результатов необходимо, однако, сделать еще следующее замечание. Диссипируемая в жидкости энергия разумеется, инвариантна относительно галилеевого преобразования системы отсчета. Производные от скорости этому требованию конечно удовлетворяют, но в сверхтекучей жидкости галилеевски инвариантна также и разность скоростей w = V/i — vs. Поэтому и диссипативные потоки в сверхтекучей жидкости могут зависеть не только от градиентов термодинамических величин и скоростей, но и от самой w. Как уже было отмечено в § 139, эта разность фактически должна рассматриваться как малая величина, и в этом смысле выражения (140,5—6) содержат в себе не все в принципе возможные члены, но лишь наибольшие из них
Задача
Разделить уравнения для нормального и сверхтекуче! о движений в несжимаемой сверхтекучей жидкости (принимаются постоянными не только полная плотность р, но и ps и р„ по отдельности).
Решение. Диссипативные члены в энтропийном уравнении являются малыми величинами второго порядка и могут Сыть в данном случае опущены; тогда и s = const, а из уравнений (139,3) и (139,5) имеем div vs = divv„ = = 0. В тензоре же плотности потока импульса сохраняем линейный по градиентам скорости член, связанный с вязкостью нормального движения:
Подставив это выражение (вместе с Пщ из (139,12)), получим уравнение Ps 4*7" + Р" 4fiT + Ps (Vs^ v« + Р" (v«7) v« — — Vp 4- П div v„,
ИЛИ
Pn —gj- + Рп (VnV) V„ + PsV ~Y + Ps7 ~gf = — VP + 4 V„.
где введен потенциал сверхтекучего движения согласно vs = V(ps и учтено, что (vsV)vs = Vd2/2. Поскольку div v„ = 0, то потенциал <р» удовлетворяет уравнению Лапласа Д<р5 = 0. Введем в качестве двух вспомогательных величин «давления» нормального и сверхтекучего движений р„ и ps согласно равенству р = р0 + рп + ps, где р0 — давление на бесконечности, a ps определяется обычной для идеальной жидкости формулой
d<Ps Psv2s Ps=-Ps—f 2~.
Уравнение для скорости v„ принимает тогда вид
■^Г + <У« V) v„ = - -J- Vp„ + -3- Ду„,
Of Pn Pn
формально совпадающий с уравнением Навье — Стокса для жидкости с плотностью рп и вязкостью Г).
Таким образом, задача о движении несжимаемого гелия II сводится к двум задачам обычной гидродинамики для идеальной и для вязкой жидкостей. Сверхтекучее движение определяется уравнением Лапласа с граничным условием для нормальной производной дц>$1дп, как в обычной задаче о потенциальном обтекании идеальной жидкостью. Нормальное движение определяется уравнением Навье — Стокса с таким же граничным условием для Vn (при отсутствии теплообмена между стенкой и жидкостью), как в обычной задаче об обтекании вязкой жидкостью. Распределение давления определяется затем как сумма ро + р„ + ps-
Для определения же распределения температуры пишем в уравнении (139,6) (с р из (139,14)) vs = v"(ps и интегрируя находим
vl Рп d(Ps
Р (р. Т) + — — — (v„ — vs)2 + = const.
Изменения температуры и давления в несжимаемой жидкости малы, и с точностью до членов первого порядка пишем:
1* — Но = — s (Г — Г„) + (р — ро)
(Го, ро — температура и давление на бесконечности). Подставляя это выражение в написанный интеграл уравнения и вводя ри и р», получим:
° PS L Pn Ps 2 j'