- •§ 1. Уравнение непрерывности
 - •§ Pvrff,
 - •§ 2. Уравнение Эйлера
 - •§ 3. Гидростатика
 - •§ 4. Условие отсутствия конвекции
 - •§ 5. Уравнение Бернулли
 - •§ 6. Поток энергии
 - •§ 7. Поток импульса
 - •§ 8. Сохранение циркуляции скорости
 - •§ 9. Потенциальное движение
 - •§ 10. Несжимаемая жидкость
 - •§ 12. Гравитационные волны
 - •§ 13. Внутренние волны в несжимаемой жидкости
 - •§ 14. Волны во вращающейся жидкости
 - •Глава II
 - •§ 15. Уравнения движения вязкой жидкости
 - •§ 16. Диссипация энергии в несжимаемой жидкости
 - •§17. Течение по трубе
 - •§ 18. Движение жидкости между вращающимися цилиндрами
 - •§ 19. Закон подобия
 - •§ 20. Течение при малых числах Рейнольдса
 - •§ 21. Ламинарный след
 - •§ 22. Вязкость суспензий
 - •§ 23. Точные решения уравнений движения вязкой жидкости
 - •§ 24. Колебательное движение в вязкой жидкости
 - •§ 25. Затухание гравитационных волн
 - •Глава III
 - •§ 26. Устойчивость стационарного движения жидкости
 - •§ 27. Устойчивость вращательного движения жидкости
 - •§ 29. Неустойчивость тангенциальных разрывов
 - •§ 30. Квазипериодическое движение и синхронизация частот3)
 - •§ 31. Странный аттрактор
 - •§ 32. Переход к турбулентности путем удвоения периодов
 - •§ 33. Развитая турбулентность
 - •§ 34. Корреляционные функции скоростей
 - •§ 35. Турбулентная область и явление отрыва
 - •§ 36. Турбулентная струя
 - •§ 37. Турбулентный след
 - •§ 38. Теорема Жуковского
 - •Глава IV
 - •§ 39. Ламинарный пограничный слой
 - •1. Определить толщину пограничного слоя вблизи критической точки (см. § 10) на обтекаемом жидкостью теле.
 - •2. Определить движение в пограничном слое при конфузорном (см. § 23) течении между двумя пересекающимися плоскостями (к.. Pohlhausen, 1921).
 - •§ 41. Устойчивость движения в ламинарном пограничном слое
 - •2) Эта аналогия указана а в. Тимофеевым (1979) и а а Андроновым и а л. Фабрикантом (1979); ниже мы следуем изложению а. В. Тимофеева.
 - •8) При V"(y) шг 0 уравнение (41,2) вообще не имеет решений, удовлетворяющих необходимым граничным условиям.
 - •§ 42. Логарифмический профиль скоростей
 - •§ 43. Турбулентное течение в трубах
 - •§ 44. Турбулентный пограничный слой
 - •§ 45. Кризис сопротивления
 - •§ 46. Хорошо обтекаемые тела
 - •§ 47. Индуктивное сопротивление
 - •§ 48. Подъёмная сила тонкого крыла
 - •S2(£)-Citt) 6-«
 - •Глава V
 - •§ 49. Общее уравнение переноса тепла
 - •§ 50. Теплопроводность в несжимаемой жидкости
 - •§ 51. Теплопроводность в неограниченной среде
 - •§ 52. Теплопроводность в ограниченной среде
 - •§ 53. Закон подобия для теплопередачи
 - •§ 54. Теплопередача в пограничном слое
 - •ВгТт « - у«р-
 - •§ 55. Нагревание тела в движущейся жидкости
 - •§ 56. Свободная конвекция
 - •§ 57. Конвективная неустойчивость неподвижной жидкости
 - •§ 58. Уравнения гидродинамики для жидкой смеси
 - •§ 59. Коэффициенты диффузии и термодиффузии
 - •§ 60. Диффузия взвешенных в жидкости частиц
 - •Глава VII
 - •§ 61. Формула Лапласа
 - •§ 62. Капиллярные волны
 - •§ 63. Влияние адсорбированных пленок на движение жидкости
 - •Глава VIII
 - •§ 64. Звуковые волны
 - •§ 66. Энергия и импульс звуковых волн
 - •§ 66. Отражение и преломление звуковых волн
 - •§ 67. Геометрическая акустика
 - •§ 68. Распространение звука в движущейся среде
 - •§ 69. Собственные колебания
 - •§ 70. Сферические волны
 - •§71. Цилиндрические волны
 - •§ 72. Общее решение волнового уравнения
 - •Ctjc42-(X-q2- (*/-г,)2'
 - •§ 73. Боковая волна
 - •§ 74. Излучение звука
 - •§ 75. Возбуждение звука турбулентностью
 - •V 1г' 4я j дхидх1к
 - •§ 76. Принцип взаимности
 - •§ 77. Распространение звука по трубке
 - •§ 78. Рассеяние звука
 - •§ 79. Поглощение звука
 - •4. Определить дополнительное поглощение звука, распространяющегося в смеси двух веществ, связанное с диффузией (и. Г. Шапошников и 3. А Гольдберг, 1952).
 - •§ 80. Акустическое течение
 - •§ 81. Вторая вязкость
 - •Глава IX
 - •§ 82. Распространение возмущений в потоке сжимаемого газа
 - •2) Во избежание недоразумений оговорим, что если перед обтекаемым телом возникает ударная волна, то эта область несколько увеличивается (см. § 122).
 - •§ 83. Стационарный поток сжимаемого газа
 - •§ 84. Поверхности разрыва
 - •§ 85. Ударная адиабата
 - •2) Такой выбор системы координат будет подразумеваться везде в этой главе, за исключением § 92.
 - •§ 86. Ударные волны слабой интенсивности
 - •§ 87] Направление изменения величин в ударной волне 463
 - •§ 87. Направление изменения величин в ударной волне
 - •§ 88. Эволюционность ударных волн
 - •§ 89. Ударные волны в политропном газе
 - •1. Получить формулу
 - •§ 90. Гофрировочная неустойчивость ударных волн
 - •2) Сравните с аналогичной ситуацией для тангенциальных разрывов — задача 2 § 84.
 - •1) Эта неустойчивость тоже была указана с. П. Дьяковым (1954); правильное значение нижней границы в (90,17) найдено в. М. Конторовичем (1957).
 - •§ 91. Распространение ударной волны по трубе
 - •§ 92. Косая ударная волна
 - •§ 93. Ширина ударных волн
 - •§ 94. Ударные волны в релаксирующей среде
 - •§ 96. Слабые разрывы
 - •Глава X
 - •§ 97. Истечение газа через сопло
 - •§ 98. Вязкое движение сжимаемого газа по трубе
 - •§ 99. Одномерное автомодельное движение
 - •5. Определить движение в изотермической автомодельной волне разрежения.
 - •§ 100. Разрывы в начальных условиях
 - •§ 101. Одномерные бегущие волны
 - •§ 102. Образование разрывов в звуковой волне
 - •§ 103. Характеристики
 - •§ 104. Инварианты Римана
 - •§ 105. Произвольное одномерное движение сжимаемого газа
 - •§ 106. Задача о сильном взрыве
 - •§ 107. Сходящаяся сферическая ударная волна
 - •2) Эта задача была рассмотрена независимо Гудерлеем (о. Guderleu, 1942) и л. Д. Ландау и к. П. Станюковичем (1944, опубликовано в 1955).
 - •§ 108. Теория «мелкой воды»
 - •Глава XI
 - •§ 109. Волна разрежения
 - •§ 111. Пересечение ударных волн с твердой поверхностью
 - •§ 112. Сверхзвуковое обтекание угла
 - •§ 113. Обтекание конического острия
 - •Глава XII
 - •§ 114. Потенциальное движение сжимаемого газа
 - •§ 115. Стационарные простые волны
 - •§ 116. Уравнение Чаплыгина (общая задача
 - •§ 117. Характеристики плоского стационарного течения
 - •§ 118. Уравнение Эйлера — Трикоми. Переход через звуковую скорость
 - •§1191 Решение уравнения эйлера —трикоми 619
 - •§ 119. Решения уравнения Эйлера — Трикоми вблизи неособых точек звуковой поверхности
 - •§ 120. Обтекание со звуковой скоростью
 - •§ 121. Отражение слабого разрыва от звуковой линии
 - •Глава XIII
 - •§ 122. Образование ударных воли при сверхзвуковом обтекании тел
 - •§ 123. Сверхзвуковое обтекание заостренного тела
 - •§ 124. Дозвуковое обтекание тонкого крыла
 - •§ 125. Сверхзвуковое обтекание крыла
 - •§ 126. Околозвуковой закон подобия
 - •§ 127. Гиперзвуковой закон подобия
 - •Глава XIV
 - •§ 128. Медленное горение
 - •§ 129. Детонация
 - •§ 130. Распространение детонационной волны
 - •§ 131. Соотношение между различными режимами горения
 - •§ 132. Конденсационные скачки
 - •Глава XV
 - •§ 133. Тензор энергии-импульса жидкости
 - •§ 134. Релятивистские гидродинамические уравнения
 - •§ 135. Ударные волны в релятивистской гидродинамике
 - •§ 136. Релятивистские уравнения движения вязкой и теплопроводной среды
 - •§ 137. Основные свойства сверхтекучей жидкости
 - •§ 138. Термомеханический эффект
 - •§ 139. Уравнения гидродинамики сверхтекучей жидкости
 - •§ 140. Диссипативные процессы в сверхтекучей жидкости
 - •§ 141. Распространение звука в сверхтекучей жидкости
 
§ 138. Термомеханический эффект
	 
		')
		Более полное микроскопическое
		обоснование этого утверждения — см.
		IX § 26.
Легко найти количество тепла Q, поглощающееся при втекании в сосуд через капилляр 1 г гелия. Втекающая жидкость не приносит с собой энтропии. Для того чтобы находящийся в сосуде гелий остался при своей температуре Т, надо было бы сообщить ему количество тепла Ts так, чтобы скомпенсировать уменьшение приходящейся на единицу массы энтропии благодаря введению 1 г гелия с равной нулю энтропией. Это значит, что при втекании 1 г гелия в сосуд с гелием при температуре Т поглощается количество тепла
Q = Ts. (138,1)
Наоборот, при вытекании 1 г гелия из сосуда с гелием при температуре Т выделяется количество тепла Ts.
Рассмотрим теперь два сосуда с гелием II при температурах Т] и Т2, причем сосуды соединены друг с другом тонким капилляром. Благодаря возможности свободного сверхтекучего перетекания по капилляру быстро установится механическое равновесие жидкости в обоих сосудах. Поскольку, однако, сверхтекучее движение не переносит тепла, тепловое равновесие (при котором температуры гелия в обоих сосудах сравниваются) установится лишь значительно позднее.
Условие механического равновесия легко написать, воспользовавшись тем, что установление этого равновесия происходит согласно предыдущему при постоянных энтропиях si и s2 гелия в обоих сосудах.
Если Ei и г2— внутренние энергии единицы массы гелия при температурах Тх и Т2, то условие механического равновесия (условие минимума энергии), осуществляемого сверхтекучим перетеканием жидкости, будет
( дг, \ _ ( де2 \ \ дЫ Л, V dN )Sl'
') Весьма слабый термомеханический эффект должен, строго говоря, иметь место и в обычных жидкостях; аномальным у гелия II является большая величина этого эффекта. Термомеханический эффект в обычных жидкостях представляет собой необратимое явление типа термоэлектрического эффекта Пельтье (фактически такой эффект наблюдается в разреженных газах; см. X, задача 1 к § 14). Такого рода эффект должен существовать и в гелии II, но в этом случае он перекрывается значительно превосходящим его описанным ниже другим эффектом, специфическим для гелия II и не имеющим ничего общего с необратимыми явлениями типа эффекта Пельтье.
"где N — число атомов в I г гелия. Но производная (de/6W)s есть химический потенциал р. Поэтому -мы получаем условие равновесия в виде
|i(Pi,7i) = ,i(pt,r,) (138,2)
(Рь Рг— давления в обоих сосудах).
В дальнейшем мы будем понимать под химическим потенциалом р не термодинамический потенциал, отнесенный к одной частице (атому), как это обычно принято, а термодинамический потенциал, отнесенный к единице массы гелия; оба определения отличаются лишь постоянным множителем — массой атома гелия.
Если давления р\, р2 малы, то, разлагая по их степеням и помня, что (дц/др)т есть удельный объем (слабо зависящий от температуры), получаем:
г,
4г=М0, 7V-n(0, T2) = \sdT,
где Ар — р2 — р\. Если мала также и разность температур АТ = Т2 — Ть то, разлагая по степеням ДГ и замечая, что (дц,/дТ)р = —s, получим следующее соотношение:
|f = PS (138,3)
(Н. London, 1939). Поскольку s > 0, то и Др/ДГ > 0.
