
- •§ 1. Уравнение непрерывности
- •§ Pvrff,
- •§ 2. Уравнение Эйлера
- •§ 3. Гидростатика
- •§ 4. Условие отсутствия конвекции
- •§ 5. Уравнение Бернулли
- •§ 6. Поток энергии
- •§ 7. Поток импульса
- •§ 8. Сохранение циркуляции скорости
- •§ 9. Потенциальное движение
- •§ 10. Несжимаемая жидкость
- •§ 12. Гравитационные волны
- •§ 13. Внутренние волны в несжимаемой жидкости
- •§ 14. Волны во вращающейся жидкости
- •Глава II
- •§ 15. Уравнения движения вязкой жидкости
- •§ 16. Диссипация энергии в несжимаемой жидкости
- •§17. Течение по трубе
- •§ 18. Движение жидкости между вращающимися цилиндрами
- •§ 19. Закон подобия
- •§ 20. Течение при малых числах Рейнольдса
- •§ 21. Ламинарный след
- •§ 22. Вязкость суспензий
- •§ 23. Точные решения уравнений движения вязкой жидкости
- •§ 24. Колебательное движение в вязкой жидкости
- •§ 25. Затухание гравитационных волн
- •Глава III
- •§ 26. Устойчивость стационарного движения жидкости
- •§ 27. Устойчивость вращательного движения жидкости
- •§ 29. Неустойчивость тангенциальных разрывов
- •§ 30. Квазипериодическое движение и синхронизация частот3)
- •§ 31. Странный аттрактор
- •§ 32. Переход к турбулентности путем удвоения периодов
- •§ 33. Развитая турбулентность
- •§ 34. Корреляционные функции скоростей
- •§ 35. Турбулентная область и явление отрыва
- •§ 36. Турбулентная струя
- •§ 37. Турбулентный след
- •§ 38. Теорема Жуковского
- •Глава IV
- •§ 39. Ламинарный пограничный слой
- •1. Определить толщину пограничного слоя вблизи критической точки (см. § 10) на обтекаемом жидкостью теле.
- •2. Определить движение в пограничном слое при конфузорном (см. § 23) течении между двумя пересекающимися плоскостями (к.. Pohlhausen, 1921).
- •§ 41. Устойчивость движения в ламинарном пограничном слое
- •2) Эта аналогия указана а в. Тимофеевым (1979) и а а Андроновым и а л. Фабрикантом (1979); ниже мы следуем изложению а. В. Тимофеева.
- •8) При V"(y) шг 0 уравнение (41,2) вообще не имеет решений, удовлетворяющих необходимым граничным условиям.
- •§ 42. Логарифмический профиль скоростей
- •§ 43. Турбулентное течение в трубах
- •§ 44. Турбулентный пограничный слой
- •§ 45. Кризис сопротивления
- •§ 46. Хорошо обтекаемые тела
- •§ 47. Индуктивное сопротивление
- •§ 48. Подъёмная сила тонкого крыла
- •S2(£)-Citt) 6-«
- •Глава V
- •§ 49. Общее уравнение переноса тепла
- •§ 50. Теплопроводность в несжимаемой жидкости
- •§ 51. Теплопроводность в неограниченной среде
- •§ 52. Теплопроводность в ограниченной среде
- •§ 53. Закон подобия для теплопередачи
- •§ 54. Теплопередача в пограничном слое
- •ВгТт « - у«р-
- •§ 55. Нагревание тела в движущейся жидкости
- •§ 56. Свободная конвекция
- •§ 57. Конвективная неустойчивость неподвижной жидкости
- •§ 58. Уравнения гидродинамики для жидкой смеси
- •§ 59. Коэффициенты диффузии и термодиффузии
- •§ 60. Диффузия взвешенных в жидкости частиц
- •Глава VII
- •§ 61. Формула Лапласа
- •§ 62. Капиллярные волны
- •§ 63. Влияние адсорбированных пленок на движение жидкости
- •Глава VIII
- •§ 64. Звуковые волны
- •§ 66. Энергия и импульс звуковых волн
- •§ 66. Отражение и преломление звуковых волн
- •§ 67. Геометрическая акустика
- •§ 68. Распространение звука в движущейся среде
- •§ 69. Собственные колебания
- •§ 70. Сферические волны
- •§71. Цилиндрические волны
- •§ 72. Общее решение волнового уравнения
- •Ctjc42-(X-q2- (*/-г,)2'
- •§ 73. Боковая волна
- •§ 74. Излучение звука
- •§ 75. Возбуждение звука турбулентностью
- •V 1г' 4я j дхидх1к
- •§ 76. Принцип взаимности
- •§ 77. Распространение звука по трубке
- •§ 78. Рассеяние звука
- •§ 79. Поглощение звука
- •4. Определить дополнительное поглощение звука, распространяющегося в смеси двух веществ, связанное с диффузией (и. Г. Шапошников и 3. А Гольдберг, 1952).
- •§ 80. Акустическое течение
- •§ 81. Вторая вязкость
- •Глава IX
- •§ 82. Распространение возмущений в потоке сжимаемого газа
- •2) Во избежание недоразумений оговорим, что если перед обтекаемым телом возникает ударная волна, то эта область несколько увеличивается (см. § 122).
- •§ 83. Стационарный поток сжимаемого газа
- •§ 84. Поверхности разрыва
- •§ 85. Ударная адиабата
- •2) Такой выбор системы координат будет подразумеваться везде в этой главе, за исключением § 92.
- •§ 86. Ударные волны слабой интенсивности
- •§ 87] Направление изменения величин в ударной волне 463
- •§ 87. Направление изменения величин в ударной волне
- •§ 88. Эволюционность ударных волн
- •§ 89. Ударные волны в политропном газе
- •1. Получить формулу
- •§ 90. Гофрировочная неустойчивость ударных волн
- •2) Сравните с аналогичной ситуацией для тангенциальных разрывов — задача 2 § 84.
- •1) Эта неустойчивость тоже была указана с. П. Дьяковым (1954); правильное значение нижней границы в (90,17) найдено в. М. Конторовичем (1957).
- •§ 91. Распространение ударной волны по трубе
- •§ 92. Косая ударная волна
- •§ 93. Ширина ударных волн
- •§ 94. Ударные волны в релаксирующей среде
- •§ 96. Слабые разрывы
- •Глава X
- •§ 97. Истечение газа через сопло
- •§ 98. Вязкое движение сжимаемого газа по трубе
- •§ 99. Одномерное автомодельное движение
- •5. Определить движение в изотермической автомодельной волне разрежения.
- •§ 100. Разрывы в начальных условиях
- •§ 101. Одномерные бегущие волны
- •§ 102. Образование разрывов в звуковой волне
- •§ 103. Характеристики
- •§ 104. Инварианты Римана
- •§ 105. Произвольное одномерное движение сжимаемого газа
- •§ 106. Задача о сильном взрыве
- •§ 107. Сходящаяся сферическая ударная волна
- •2) Эта задача была рассмотрена независимо Гудерлеем (о. Guderleu, 1942) и л. Д. Ландау и к. П. Станюковичем (1944, опубликовано в 1955).
- •§ 108. Теория «мелкой воды»
- •Глава XI
- •§ 109. Волна разрежения
- •§ 111. Пересечение ударных волн с твердой поверхностью
- •§ 112. Сверхзвуковое обтекание угла
- •§ 113. Обтекание конического острия
- •Глава XII
- •§ 114. Потенциальное движение сжимаемого газа
- •§ 115. Стационарные простые волны
- •§ 116. Уравнение Чаплыгина (общая задача
- •§ 117. Характеристики плоского стационарного течения
- •§ 118. Уравнение Эйлера — Трикоми. Переход через звуковую скорость
- •§1191 Решение уравнения эйлера —трикоми 619
- •§ 119. Решения уравнения Эйлера — Трикоми вблизи неособых точек звуковой поверхности
- •§ 120. Обтекание со звуковой скоростью
- •§ 121. Отражение слабого разрыва от звуковой линии
- •Глава XIII
- •§ 122. Образование ударных воли при сверхзвуковом обтекании тел
- •§ 123. Сверхзвуковое обтекание заостренного тела
- •§ 124. Дозвуковое обтекание тонкого крыла
- •§ 125. Сверхзвуковое обтекание крыла
- •§ 126. Околозвуковой закон подобия
- •§ 127. Гиперзвуковой закон подобия
- •Глава XIV
- •§ 128. Медленное горение
- •§ 129. Детонация
- •§ 130. Распространение детонационной волны
- •§ 131. Соотношение между различными режимами горения
- •§ 132. Конденсационные скачки
- •Глава XV
- •§ 133. Тензор энергии-импульса жидкости
- •§ 134. Релятивистские гидродинамические уравнения
- •§ 135. Ударные волны в релятивистской гидродинамике
- •§ 136. Релятивистские уравнения движения вязкой и теплопроводной среды
- •§ 137. Основные свойства сверхтекучей жидкости
- •§ 138. Термомеханический эффект
- •§ 139. Уравнения гидродинамики сверхтекучей жидкости
- •§ 140. Диссипативные процессы в сверхтекучей жидкости
- •§ 141. Распространение звука в сверхтекучей жидкости
§ 132. Конденсационные скачки
Формальным сходством с детонационными волнами обладают конденсационные скачки, возникающие при движении газа, содержащего, например, пересыщенный водяной пар27). Эти скачки представляют собой результат внезапной конденсации паров, причем процесс конденсации происходит очень быстро в узкой зоне, которую можно рассматривать как некоторую поверхность разрыва, отделяющую исходный газ от «тумана» — газа, содержащего конденсированные пары. Подчеркнем, что конденсационные скачки представляют собой самостоятельное физическое явление, а не результат сжатия газа в обычной ударной волне; последнее вообще не может привести к конденсации паров, так как эффект увеличения давления в ударной волне перекрывается в смысле его влияния на степень пересыщения обратным эффектом повышения температуры.
Как и реакция горения, конденсация пара представляет собой экзотермический процесс. Роль теплоты реакции q играет при этом количество тепла, выделяющегося при конденсации пара, заключенного в единице массы газа28). Конденсационная адиабата, определяющая зависимость р2 от V2 при заданном состоянии ри Vi исходного газа с неконденсированными парами, выглядит так же, как и изображенная на рис. 136 адиабата для реакции горения. Взаимоотношение между скоростями распространения скачка и\, v2 и скоростями звука С\, с2 на различных участках конденсационной адиабаты определяется неравенствами (131,1). Однако не все из перечисленных в (131,1) четырех случаев могут реально осуществиться.
Прежде всего возникает вопрос об эволюционное™ конденсационных скачков. В этом отношении их свойства полностью аналогичны свойствам разрывов, представляющих зону горения. Мы видели (§ 131), что отличие устойчивости последних от устойчивости обычных ударных волн связано с наличием одного дополнительного условия (заданное значение потока /), которое должно выполняться на их поверхности. В данном случае тоже имеется одно дополнительное условие — термодинамическое состояние газа / перед скачком должно быть как раз тем, которое соответствует началу быстрой конденсации пара (это условие представляет собой определенное соотношение между давлением и температурой газа )). Поэтому сразу можно заключить, что весь участок адиабаты под точкой О', на котором v\ < Ci, v2 > с2, исключается как не соответствующий устойчивым скачкам.
Леко видеть, что не могут реально осуществляться также и ;качки, соответствующие участку над точкой О (ui > сл, v2 < с2). Такой скачок перемещался бы относительно находящегося перед ним газа со сверхзвуковой скоростью, а потому его возникновение никак не отражалось бы на состоянии этого газа. Это значит, что скачок должен был бы возникнуть вдоль поверхности, заранее определяемой условиями обтекания (поверхность, на которой при непрерывном течении достигались бы необходимые условия начала быстрой конденсации). С другой стороны, скорость скачка относительно остающегося позади него газа в данном случае была бы дозвуковой. Но уравнения дозвукового движения не имеют, вообще говоря, решений, в которых все величины принимают заранее определенные значения на произвольно заданной поверхности1).
Таким образом, оказываются возможными конденсационные скачки всего двух типов: 1) сверхзвуковые скачки (отрезок АО адиабаты), на которых
0i>ci, v2>c2, р2>Ри V2<Vi (132,1)
§ 132]
КОНДЕНСАЦИОННЫЕ СКАЧКИ
601
и конденсация сопровождается в них сжатием вещества; 2) дозвуковые скачки (отрезок А'О' адиабаты), на которых
vi<cu v2<c2, рг<ри V2>Vi (132,2)
и конденсация сопровождается разрежением газа.
Значение потока / (скорости конденсации) монотонно возрастает вдоль отрезка А'О' от точки А' (в которой / = 0) к точке О', а вдоль отрезка АО — монотонно падает от А (где / == со) к О. Интервал же значений / (а с ним и соответствующий интервал значений скорости vi = jVi) между теми, которые / принимает в точках О и О', является «запрещенным» и не может быть осуществлен в конденсационных скачках. Общее количество (масса) конденсирующегося пара обычно весьма мало по сравнению с количеством основного газа. Поэтому можно с одинаковым правом рассматривать оба газа / и 2 как идеальные; по этой же причине можно считать одинаковыми теплоемкости обоих газов. Тогда значение v\ в точке О определится формулой (129,9), а в точке О' — такой же формулой с обратным знаком перед вторым корнем; положив в этих формулах yi=Y2 = Y и введя скорость звука С\ согласно с2 = у (у— 1)с0Г|( найдем следующий запрещенный интервал значений v\\
у«?+^«-у^<».<
< Vе'+ J^i=± ^~+ V'-г1 q ■ (132,3)
Задача
Определить предельные значения отношения давлений рг/Pi в конденсационном скачке, считая, что qjc2<g.\.
Решение. На участке А'О' конденсационной адиабаты (рис. 136) отношение рг/pi монотонно возрастает по направлению от О' к А', пробегая значения в интервале
Л/ (Y+Uc2 р,
На участке же АО это отношение возрастает но направлению от А к О, пробегая значения в интервале
с[ Pi V (Y+.1K