
- •§ 1. Уравнение непрерывности
- •§ Pvrff,
- •§ 2. Уравнение Эйлера
- •§ 3. Гидростатика
- •§ 4. Условие отсутствия конвекции
- •§ 5. Уравнение Бернулли
- •§ 6. Поток энергии
- •§ 7. Поток импульса
- •§ 8. Сохранение циркуляции скорости
- •§ 9. Потенциальное движение
- •§ 10. Несжимаемая жидкость
- •§ 12. Гравитационные волны
- •§ 13. Внутренние волны в несжимаемой жидкости
- •§ 14. Волны во вращающейся жидкости
- •Глава II
- •§ 15. Уравнения движения вязкой жидкости
- •§ 16. Диссипация энергии в несжимаемой жидкости
- •§17. Течение по трубе
- •§ 18. Движение жидкости между вращающимися цилиндрами
- •§ 19. Закон подобия
- •§ 20. Течение при малых числах Рейнольдса
- •§ 21. Ламинарный след
- •§ 22. Вязкость суспензий
- •§ 23. Точные решения уравнений движения вязкой жидкости
- •§ 24. Колебательное движение в вязкой жидкости
- •§ 25. Затухание гравитационных волн
- •Глава III
- •§ 26. Устойчивость стационарного движения жидкости
- •§ 27. Устойчивость вращательного движения жидкости
- •§ 29. Неустойчивость тангенциальных разрывов
- •§ 30. Квазипериодическое движение и синхронизация частот3)
- •§ 31. Странный аттрактор
- •§ 32. Переход к турбулентности путем удвоения периодов
- •§ 33. Развитая турбулентность
- •§ 34. Корреляционные функции скоростей
- •§ 35. Турбулентная область и явление отрыва
- •§ 36. Турбулентная струя
- •§ 37. Турбулентный след
- •§ 38. Теорема Жуковского
- •Глава IV
- •§ 39. Ламинарный пограничный слой
- •1. Определить толщину пограничного слоя вблизи критической точки (см. § 10) на обтекаемом жидкостью теле.
- •2. Определить движение в пограничном слое при конфузорном (см. § 23) течении между двумя пересекающимися плоскостями (к.. Pohlhausen, 1921).
- •§ 41. Устойчивость движения в ламинарном пограничном слое
- •2) Эта аналогия указана а в. Тимофеевым (1979) и а а Андроновым и а л. Фабрикантом (1979); ниже мы следуем изложению а. В. Тимофеева.
- •8) При V"(y) шг 0 уравнение (41,2) вообще не имеет решений, удовлетворяющих необходимым граничным условиям.
- •§ 42. Логарифмический профиль скоростей
- •§ 43. Турбулентное течение в трубах
- •§ 44. Турбулентный пограничный слой
- •§ 45. Кризис сопротивления
- •§ 46. Хорошо обтекаемые тела
- •§ 47. Индуктивное сопротивление
- •§ 48. Подъёмная сила тонкого крыла
- •S2(£)-Citt) 6-«
- •Глава V
- •§ 49. Общее уравнение переноса тепла
- •§ 50. Теплопроводность в несжимаемой жидкости
- •§ 51. Теплопроводность в неограниченной среде
- •§ 52. Теплопроводность в ограниченной среде
- •§ 53. Закон подобия для теплопередачи
- •§ 54. Теплопередача в пограничном слое
- •ВгТт « - у«р-
- •§ 55. Нагревание тела в движущейся жидкости
- •§ 56. Свободная конвекция
- •§ 57. Конвективная неустойчивость неподвижной жидкости
- •§ 58. Уравнения гидродинамики для жидкой смеси
- •§ 59. Коэффициенты диффузии и термодиффузии
- •§ 60. Диффузия взвешенных в жидкости частиц
- •Глава VII
- •§ 61. Формула Лапласа
- •§ 62. Капиллярные волны
- •§ 63. Влияние адсорбированных пленок на движение жидкости
- •Глава VIII
- •§ 64. Звуковые волны
- •§ 66. Энергия и импульс звуковых волн
- •§ 66. Отражение и преломление звуковых волн
- •§ 67. Геометрическая акустика
- •§ 68. Распространение звука в движущейся среде
- •§ 69. Собственные колебания
- •§ 70. Сферические волны
- •§71. Цилиндрические волны
- •§ 72. Общее решение волнового уравнения
- •Ctjc42-(X-q2- (*/-г,)2'
- •§ 73. Боковая волна
- •§ 74. Излучение звука
- •§ 75. Возбуждение звука турбулентностью
- •V 1г' 4я j дхидх1к
- •§ 76. Принцип взаимности
- •§ 77. Распространение звука по трубке
- •§ 78. Рассеяние звука
- •§ 79. Поглощение звука
- •4. Определить дополнительное поглощение звука, распространяющегося в смеси двух веществ, связанное с диффузией (и. Г. Шапошников и 3. А Гольдберг, 1952).
- •§ 80. Акустическое течение
- •§ 81. Вторая вязкость
- •Глава IX
- •§ 82. Распространение возмущений в потоке сжимаемого газа
- •2) Во избежание недоразумений оговорим, что если перед обтекаемым телом возникает ударная волна, то эта область несколько увеличивается (см. § 122).
- •§ 83. Стационарный поток сжимаемого газа
- •§ 84. Поверхности разрыва
- •§ 85. Ударная адиабата
- •2) Такой выбор системы координат будет подразумеваться везде в этой главе, за исключением § 92.
- •§ 86. Ударные волны слабой интенсивности
- •§ 87] Направление изменения величин в ударной волне 463
- •§ 87. Направление изменения величин в ударной волне
- •§ 88. Эволюционность ударных волн
- •§ 89. Ударные волны в политропном газе
- •1. Получить формулу
- •§ 90. Гофрировочная неустойчивость ударных волн
- •2) Сравните с аналогичной ситуацией для тангенциальных разрывов — задача 2 § 84.
- •1) Эта неустойчивость тоже была указана с. П. Дьяковым (1954); правильное значение нижней границы в (90,17) найдено в. М. Конторовичем (1957).
- •§ 91. Распространение ударной волны по трубе
- •§ 92. Косая ударная волна
- •§ 93. Ширина ударных волн
- •§ 94. Ударные волны в релаксирующей среде
- •§ 96. Слабые разрывы
- •Глава X
- •§ 97. Истечение газа через сопло
- •§ 98. Вязкое движение сжимаемого газа по трубе
- •§ 99. Одномерное автомодельное движение
- •5. Определить движение в изотермической автомодельной волне разрежения.
- •§ 100. Разрывы в начальных условиях
- •§ 101. Одномерные бегущие волны
- •§ 102. Образование разрывов в звуковой волне
- •§ 103. Характеристики
- •§ 104. Инварианты Римана
- •§ 105. Произвольное одномерное движение сжимаемого газа
- •§ 106. Задача о сильном взрыве
- •§ 107. Сходящаяся сферическая ударная волна
- •2) Эта задача была рассмотрена независимо Гудерлеем (о. Guderleu, 1942) и л. Д. Ландау и к. П. Станюковичем (1944, опубликовано в 1955).
- •§ 108. Теория «мелкой воды»
- •Глава XI
- •§ 109. Волна разрежения
- •§ 111. Пересечение ударных волн с твердой поверхностью
- •§ 112. Сверхзвуковое обтекание угла
- •§ 113. Обтекание конического острия
- •Глава XII
- •§ 114. Потенциальное движение сжимаемого газа
- •§ 115. Стационарные простые волны
- •§ 116. Уравнение Чаплыгина (общая задача
- •§ 117. Характеристики плоского стационарного течения
- •§ 118. Уравнение Эйлера — Трикоми. Переход через звуковую скорость
- •§1191 Решение уравнения эйлера —трикоми 619
- •§ 119. Решения уравнения Эйлера — Трикоми вблизи неособых точек звуковой поверхности
- •§ 120. Обтекание со звуковой скоростью
- •§ 121. Отражение слабого разрыва от звуковой линии
- •Глава XIII
- •§ 122. Образование ударных воли при сверхзвуковом обтекании тел
- •§ 123. Сверхзвуковое обтекание заостренного тела
- •§ 124. Дозвуковое обтекание тонкого крыла
- •§ 125. Сверхзвуковое обтекание крыла
- •§ 126. Околозвуковой закон подобия
- •§ 127. Гиперзвуковой закон подобия
- •Глава XIV
- •§ 128. Медленное горение
- •§ 129. Детонация
- •§ 130. Распространение детонационной волны
- •§ 131. Соотношение между различными режимами горения
- •§ 132. Конденсационные скачки
- •Глава XV
- •§ 133. Тензор энергии-импульса жидкости
- •§ 134. Релятивистские гидродинамические уравнения
- •§ 135. Ударные волны в релятивистской гидродинамике
- •§ 136. Релятивистские уравнения движения вязкой и теплопроводной среды
- •§ 137. Основные свойства сверхтекучей жидкости
- •§ 138. Термомеханический эффект
- •§ 139. Уравнения гидродинамики сверхтекучей жидкости
- •§ 140. Диссипативные процессы в сверхтекучей жидкости
- •§ 141. Распространение звука в сверхтекучей жидкости
§ 131. Соотношение между различными режимами горения
В § 129 было показано, что детонации соответствуют точки на верхней части детонационной адиабаты для данного процесса горения. Поскольку уравнение этой адиабаты есть следствие одних лишь необходимых законов сохранения массы, импульса и энергии (примененных к начальному и конечному состояниям
г
орящего
газа), то ясно, что на эту же
кривую
должны лечь точки, изобра-
жающие
состояние продуктов реакции
также
и при всяком другом режиме
горения,
в котором зону горения мож-
но
рассматривать как некоторую «по-
верхность
разрыва». Выясним теперь,
каков
именно физический смысл ос-
тальных
участков этой кривой.
\!\ , Проведем
через точку р\,
V\
(точ-
'
if
ка
^ на
РИС-
)
вертикальную и го-
^^.^ ризонтальную
прямые 1А
и
1А'
и
две
~"~
v2
касательные
10
и
10'
к
адиабате. Точ-
ки А,
А',
О,
О'
касания
или пересече-
рис
136
ния
этих прямых с кривой разделят
адиабату
на пять частей. Часть кри-
вой,
лежащая над точкой О,
соответствует,
как указано,
детонации. Рассмотрим
теперь другие участки кри-
вой.
Прежде всего легко видеть, что участок АА' вовсе не имеет никакого физического смысла. Действительно, на этом участке имеем Pi > р\, Vi > Vi, и поэтому поток вещества / оказался бы мнимым (ср. (129,2)).
В точках касания О и О' производная d(j2)/dp2 обращается в нуль; уже было указано в § 129 (со ссылкой на § 87), что в таких точках имеют одновременно место равенство v2 — с2 и неравенство d(v2/c2)/dp2 < 0. Отсюда следует, что над точками касания v2 < с2, а под ними v2 > с2. Что касается взаимоотношения между скоростями vi и с\, то его всегда легко установить из рассмотрения наклона соответствующих хорд и касательных, подобно тому как это было сделано в § 129 для участка кривой над точкой О. В результате такого рассмотрения найдем, что на.
v2
<
с2;
Щ
>
с2;
v2
<
с2,
v2
>
с2.
(131,1)
над точкой О: vt > си на отрезке АО: vx > си на отрезке А'0'\ и, < С\, под точкой О'; vx < с\,
В точках О и О' имеем v2 = с2. При приближении к точке А поток /, а вместе с ним и скорости уь у2 стремятся к бесконечности. При приближении же к точке А' поток /' и скорости иь у2 стремятся к нулю.
В § 88 было введено понятие об эволюционное™ ударных волн как о необходимом условии возможности их осуществления. Мы видели, что этот критерий устанавливается сравнением числа параметров, определяющих возмущение, и числом граничных условий, которым оно должно удовлетворять на самой поверхности разрыва.
Все эти соображения можно применить и к рассматриваемым здесь «поверхностям разрыва». В частности, остается в силе и произведенный в § 88 подсчет числа параметров возмущения для каждого из четырех случаев (131,1), представленный на рис.57. Для детонационного режима (адиабата над точкой О) число граничных условий такое же, как и для обычной ударной волны, и условие эволюционное™ остается прежним. Для недетонационного же режима (адиабата под точкой О) ситуация меняется ввиду изменения числа граничных условий. Дело в том, что в таком режиме горения скорость его распространения целиком определяется свойствами самой химической реакции и условиями теплопередачи из зоны горения в находящуюся перед ней ненагретую газовую смесь. Это значит, что поток вещества / через зону горения равен определенной заданной величине (точнее, определенной функции состояния исходного газа 1), между тем как в ударной или детонационной волне / может иметь произвольное значение. Отсюда следует, что на разрыве, представляющем зону недетонационного горения, число граничных условий на единицу больше, чем на ударной волне,— добавляется условие определенного значения /. Всего, таким образом, оказывается четыре условия, и тем же образом, как это было сделано в § 87, заключаем теперь, что абсолютная неустойчивость разрыва имеет место лишь в случае v\ < сь v2 > с2, изображающемся точками на участке адиабаты под точкой О'. Мы приходим к выводу, что этот участок кривой не соответствует каким бы то ни было реально осуществляющимся режимам горения.
Участок А'О' адиабаты, на котором обе скорости »| и »2 — дозвуковые, соответствует обычному режиму медленного горения. Увеличению скорости горения / соответствует на участке
А'О' адиабаты перемещение от точки А' (в которой / = 0) к О'. Написанные в § 128 формулы (128,5) соответствуют точке А' (в которой pi = р2) и применимы постольку, поскольку / достаточно мало, т. е. поскольку скорость распространения горения мала по сравнению со скоростью звука. Точка же О' отвечает предельному «наиболее быстрому» режиму рассматриваемого типа. Выпишем здесь формулы, относящиеся к этому предельному случаю.
Точка О', как и точка О, есть точка касания кривой с проведенной из точки 1 касательной. Поэтому формулы, относящиеся к точке О', можно получить непосредственно из формул (129,8—11), относящихся к точке О, сделав в них лишь соответствующую перемену знака (см. сноску на стр. 675). Именно, в формулах (129,9) и (129,11) для v\ и у2 надо изменить знак перед вторым корнем, в связи с чем меняет знак также и выражение (129,12) для vi — v2. Формулы (129,10) остаются неизменными, если понимать в них под yt новое значение. Все эти формулы сильно упрощаются в том случае, когда теплота реакции велика (q >• cviTi). Тогда получим:
(131,2)
Необходимо сделать здесь следующую оговорку. Мы видели, что при медленном горении в закрытой трубе впереди зоны горения непременно возникает ударная волна. При больших скоростях горения интенсивность этой волны велика и она существенным образом меняет состояние подходящей к зоне горения газовой смеси. Поэтому не имеет, собственно говоря, смысла следить за изменением режима горения при увеличении его скорости для заданного состояния рь Vi исходной горючей смеси. Для того чтобы достигнуть точки О', необходимо создать такие условия горения, при которых бы не возникала ударная волна. Это можно, например, осуществить при горении в открытой с обеих сторон трубе, причем с заднего конца производится непрерывный отсос продуктов горения. Скорость отсоса должна быть подобрана так, чтобы зона горения оставалась неподвижной, и потому не возникала бы ударная волна ').
Участок АО адиабаты отвечает недетонационному режиму горения,, распространяющемуся со сверхзвуковой скоростью. Оно
') Обычное медленное горение в трубе может самопроизвольно перейти в детонацию. Этому предшествует самопроизвольное ускорение распространения пламени, а детонационная волна возникает впереди последнего. Обсуждение возможных механизмов этих процессов можно найти в указанных на стр. 666, 684 книгах.
может, в принципе, возникнуть при наличии очень хороших условий теплопередачи (например, путем лучистой теплопроводности), приводящих к скоростям горения /, превышающим значение, соответствующее точке О'.
В заключение обратим внимание на следующие общие отличия (помимо отличий, заключенных в неравенствах (131,1)) между режимами, изображающимися соответственно верхней и нижней частями адиабаты. Выше точки А имеем:
р2 > Рь V2 < Vu v% < Vi.
Другими словами, продукты реакции сжаты до более высоких давления и плотности, чем исходное вещество, и движутся вслед за фронтом горения (со скоростью v\ — v2). В области же ниже точки А имеем обратные неравенства:
Р2 < Ри V2 > Vu v2 > vt;
продукты горения разрежены по сравнению с исходным веществом.