
- •§ 1. Уравнение непрерывности
- •§ Pvrff,
- •§ 2. Уравнение Эйлера
- •§ 3. Гидростатика
- •§ 4. Условие отсутствия конвекции
- •§ 5. Уравнение Бернулли
- •§ 6. Поток энергии
- •§ 7. Поток импульса
- •§ 8. Сохранение циркуляции скорости
- •§ 9. Потенциальное движение
- •§ 10. Несжимаемая жидкость
- •§ 12. Гравитационные волны
- •§ 13. Внутренние волны в несжимаемой жидкости
- •§ 14. Волны во вращающейся жидкости
- •Глава II
- •§ 15. Уравнения движения вязкой жидкости
- •§ 16. Диссипация энергии в несжимаемой жидкости
- •§17. Течение по трубе
- •§ 18. Движение жидкости между вращающимися цилиндрами
- •§ 19. Закон подобия
- •§ 20. Течение при малых числах Рейнольдса
- •§ 21. Ламинарный след
- •§ 22. Вязкость суспензий
- •§ 23. Точные решения уравнений движения вязкой жидкости
- •§ 24. Колебательное движение в вязкой жидкости
- •§ 25. Затухание гравитационных волн
- •Глава III
- •§ 26. Устойчивость стационарного движения жидкости
- •§ 27. Устойчивость вращательного движения жидкости
- •§ 29. Неустойчивость тангенциальных разрывов
- •§ 30. Квазипериодическое движение и синхронизация частот3)
- •§ 31. Странный аттрактор
- •§ 32. Переход к турбулентности путем удвоения периодов
- •§ 33. Развитая турбулентность
- •§ 34. Корреляционные функции скоростей
- •§ 35. Турбулентная область и явление отрыва
- •§ 36. Турбулентная струя
- •§ 37. Турбулентный след
- •§ 38. Теорема Жуковского
- •Глава IV
- •§ 39. Ламинарный пограничный слой
- •1. Определить толщину пограничного слоя вблизи критической точки (см. § 10) на обтекаемом жидкостью теле.
- •2. Определить движение в пограничном слое при конфузорном (см. § 23) течении между двумя пересекающимися плоскостями (к.. Pohlhausen, 1921).
- •§ 41. Устойчивость движения в ламинарном пограничном слое
- •2) Эта аналогия указана а в. Тимофеевым (1979) и а а Андроновым и а л. Фабрикантом (1979); ниже мы следуем изложению а. В. Тимофеева.
- •8) При V"(y) шг 0 уравнение (41,2) вообще не имеет решений, удовлетворяющих необходимым граничным условиям.
- •§ 42. Логарифмический профиль скоростей
- •§ 43. Турбулентное течение в трубах
- •§ 44. Турбулентный пограничный слой
- •§ 45. Кризис сопротивления
- •§ 46. Хорошо обтекаемые тела
- •§ 47. Индуктивное сопротивление
- •§ 48. Подъёмная сила тонкого крыла
- •S2(£)-Citt) 6-«
- •Глава V
- •§ 49. Общее уравнение переноса тепла
- •§ 50. Теплопроводность в несжимаемой жидкости
- •§ 51. Теплопроводность в неограниченной среде
- •§ 52. Теплопроводность в ограниченной среде
- •§ 53. Закон подобия для теплопередачи
- •§ 54. Теплопередача в пограничном слое
- •ВгТт « - у«р-
- •§ 55. Нагревание тела в движущейся жидкости
- •§ 56. Свободная конвекция
- •§ 57. Конвективная неустойчивость неподвижной жидкости
- •§ 58. Уравнения гидродинамики для жидкой смеси
- •§ 59. Коэффициенты диффузии и термодиффузии
- •§ 60. Диффузия взвешенных в жидкости частиц
- •Глава VII
- •§ 61. Формула Лапласа
- •§ 62. Капиллярные волны
- •§ 63. Влияние адсорбированных пленок на движение жидкости
- •Глава VIII
- •§ 64. Звуковые волны
- •§ 66. Энергия и импульс звуковых волн
- •§ 66. Отражение и преломление звуковых волн
- •§ 67. Геометрическая акустика
- •§ 68. Распространение звука в движущейся среде
- •§ 69. Собственные колебания
- •§ 70. Сферические волны
- •§71. Цилиндрические волны
- •§ 72. Общее решение волнового уравнения
- •Ctjc42-(X-q2- (*/-г,)2'
- •§ 73. Боковая волна
- •§ 74. Излучение звука
- •§ 75. Возбуждение звука турбулентностью
- •V 1г' 4я j дхидх1к
- •§ 76. Принцип взаимности
- •§ 77. Распространение звука по трубке
- •§ 78. Рассеяние звука
- •§ 79. Поглощение звука
- •4. Определить дополнительное поглощение звука, распространяющегося в смеси двух веществ, связанное с диффузией (и. Г. Шапошников и 3. А Гольдберг, 1952).
- •§ 80. Акустическое течение
- •§ 81. Вторая вязкость
- •Глава IX
- •§ 82. Распространение возмущений в потоке сжимаемого газа
- •2) Во избежание недоразумений оговорим, что если перед обтекаемым телом возникает ударная волна, то эта область несколько увеличивается (см. § 122).
- •§ 83. Стационарный поток сжимаемого газа
- •§ 84. Поверхности разрыва
- •§ 85. Ударная адиабата
- •2) Такой выбор системы координат будет подразумеваться везде в этой главе, за исключением § 92.
- •§ 86. Ударные волны слабой интенсивности
- •§ 87] Направление изменения величин в ударной волне 463
- •§ 87. Направление изменения величин в ударной волне
- •§ 88. Эволюционность ударных волн
- •§ 89. Ударные волны в политропном газе
- •1. Получить формулу
- •§ 90. Гофрировочная неустойчивость ударных волн
- •2) Сравните с аналогичной ситуацией для тангенциальных разрывов — задача 2 § 84.
- •1) Эта неустойчивость тоже была указана с. П. Дьяковым (1954); правильное значение нижней границы в (90,17) найдено в. М. Конторовичем (1957).
- •§ 91. Распространение ударной волны по трубе
- •§ 92. Косая ударная волна
- •§ 93. Ширина ударных волн
- •§ 94. Ударные волны в релаксирующей среде
- •§ 96. Слабые разрывы
- •Глава X
- •§ 97. Истечение газа через сопло
- •§ 98. Вязкое движение сжимаемого газа по трубе
- •§ 99. Одномерное автомодельное движение
- •5. Определить движение в изотермической автомодельной волне разрежения.
- •§ 100. Разрывы в начальных условиях
- •§ 101. Одномерные бегущие волны
- •§ 102. Образование разрывов в звуковой волне
- •§ 103. Характеристики
- •§ 104. Инварианты Римана
- •§ 105. Произвольное одномерное движение сжимаемого газа
- •§ 106. Задача о сильном взрыве
- •§ 107. Сходящаяся сферическая ударная волна
- •2) Эта задача была рассмотрена независимо Гудерлеем (о. Guderleu, 1942) и л. Д. Ландау и к. П. Станюковичем (1944, опубликовано в 1955).
- •§ 108. Теория «мелкой воды»
- •Глава XI
- •§ 109. Волна разрежения
- •§ 111. Пересечение ударных волн с твердой поверхностью
- •§ 112. Сверхзвуковое обтекание угла
- •§ 113. Обтекание конического острия
- •Глава XII
- •§ 114. Потенциальное движение сжимаемого газа
- •§ 115. Стационарные простые волны
- •§ 116. Уравнение Чаплыгина (общая задача
- •§ 117. Характеристики плоского стационарного течения
- •§ 118. Уравнение Эйлера — Трикоми. Переход через звуковую скорость
- •§1191 Решение уравнения эйлера —трикоми 619
- •§ 119. Решения уравнения Эйлера — Трикоми вблизи неособых точек звуковой поверхности
- •§ 120. Обтекание со звуковой скоростью
- •§ 121. Отражение слабого разрыва от звуковой линии
- •Глава XIII
- •§ 122. Образование ударных воли при сверхзвуковом обтекании тел
- •§ 123. Сверхзвуковое обтекание заостренного тела
- •§ 124. Дозвуковое обтекание тонкого крыла
- •§ 125. Сверхзвуковое обтекание крыла
- •§ 126. Околозвуковой закон подобия
- •§ 127. Гиперзвуковой закон подобия
- •Глава XIV
- •§ 128. Медленное горение
- •§ 129. Детонация
- •§ 130. Распространение детонационной волны
- •§ 131. Соотношение между различными режимами горения
- •§ 132. Конденсационные скачки
- •Глава XV
- •§ 133. Тензор энергии-импульса жидкости
- •§ 134. Релятивистские гидродинамические уравнения
- •§ 135. Ударные волны в релятивистской гидродинамике
- •§ 136. Релятивистские уравнения движения вязкой и теплопроводной среды
- •§ 137. Основные свойства сверхтекучей жидкости
- •§ 138. Термомеханический эффект
- •§ 139. Уравнения гидродинамики сверхтекучей жидкости
- •§ 140. Диссипативные процессы в сверхтекучей жидкости
- •§ 141. Распространение звука в сверхтекучей жидкости
§ 127. Гиперзвуковой закон подобия
Для обтекания тонких заостренных тел с большими сверхзвуковыми скоростями (большие М^ линеаризованная теория неприменима, как это уже было упомянуто в конце § 114. Поэтому представляет особый интерес простое правило подобия, которое можно установить для таких течений (их называют гиперзвуковыми) .
Возникающие при таком обтекании ударные волны наклонены к направлению движения под малым углом — порядка величины отношения 0 = 6// толщины тела к его длине. Эти волны, вообще говоря, искривлены и в то же время обладают большой интенсивностью — хотя скачок скорости на них относительно мал, но скачок давления (а с ним и энтропии) велик. Поэтому течение газа в общем случае отнюдь не является потенциальным.
') В области 1 » Mi — 1 3> 92 должна получаться формула (123,7) линеаризованной теории, согласно которой Сх ~ 94; это значит, что при увеличении К функция f(K) должна стремиться к постоянной.
Будем считать, что число Mi — порядка величины 1/0 или больше. Ударная волна понижает значение местного числа М, но оно во всяком случае остается порядка величины 1/0 (ср. задачу 2 § 112), так что число М велико во всем пространстве.
Воспользуемся указанной в § 123 «звуковой аналогией»: трёхмерная задача о стационарном обтекании тонкого тела с переменным сечением S(x) эквивалентна нестационарной двухмерной задаче об излучении звуковых волн контуром, площадь которого меняется со временем по закону S(vit); роль скорости звука играет при этом величина t>i (МТ — 1)~1/2 или при больших Mi просто С\. Подчеркнем, что единственное условие, обеспечивающее эквивалентность обеих задач, заключается в малости отношения 6//, что дает. возможность рассматривать небольшие вдоль длины тела кольцевые участки его поверхности как цилиндрические. При больших Мь однако, скорость распространения излучаемых волн сравнима по величине со скоростью частиц газа в них (ср. конец § 123), и потому задача должна решаться на основе точных, нелинеаризованных уравнений.
Возмущение скорости (по сравнению со скоростью vi натекающего потока) мало уже при всяком сверхзвуковом обтекании тонкого заостренного тела. При гиперзвуковом обтекании дополнительно еще возмущение продольной скорости мало по сравнению с возникающими поперечными скоростями:
vy ~ vz ~ i>)0, vx —• с, ~ Oi©2. (127,1)
Изменения же давления и плотности отнюдь не малы:
J^Pl-~M202, IlUlL^i, (127,2)
Pi Pi '
причем изменение давления может быть даже (при М]0 > 1) сколь угодно большим (ср. задачу 2 § 112).
Звуковая аналогия относится, очевидно, только к двухмерной задаче о движении в плоскости у, г, перпендикулярной направлению натекающего потока. В этой двухмерной задаче линейная скорость источника звука — порядка величины »i0; кроме нее в задачу входят в качестве независимых параметров еще только скорость звука с\ и размеры источника б (и параметр плотности pi)1). Из них можно составить всего одну безразмерную комбинацию
/C = MiQ, (127,3)
которая и является критерием подобия12). В качестве масштабов длины для координат у, z и масштаба времени надо при этом взять величины соответствующей размерности, составленные из тех же параметров, например, б и 5/t>i9 = l/v\\ естественным же параметром для координаты х является длина тела /. Тогда можно утверждать, что
vy = vfiv'y, vz = vfiv'z, p = Plvpy, р = р,р', (127,4)
где v , %)'z, р', р' — функции безразмерных переменных х/1,
у/8, г/б и параметра К; при этом в виду (127, 1—2) можно утверждать, что эти функции — порядка единицы13). Сила сопротивления Fx вычисляется как интеграл
Fx = <§> Р dy dz,
взятый по всей поверхности тела (в силу граничного условия у„ = 0, член vx(vn) в плотности потока импульса обращается в нуль на поверхности тела; п — нормаль к. этой поверхности). Перейдя к безразмерным переменным согласно (127,4), получим коэффициент сопротивления Сх (определенный согласно (123,6)) в виде
Сх = 2914 ф р' dy' dz'.
Оставшийся интеграл — функция безразмерного параметра К. Таким образом,
С, = в15/(Ю- (127,5)
Такой же самый закон подобия получается, очевидно, и в плоском случае — для обтекания тонкого крыла бесконечной протяженности. Для коэффициентов сопротивления и подъемной силы получаются при этом формулы вида
СХ=&ЫЮ, Cy = &fe(K). (127,6)
страненной
на нелинейную задачу, указана Хейзом
(W.
D.
Hayes,
1947);
При Ki->oo функции этого параметра в (127,5—6) стремятся к постоянным пределам. Это утверждение является следствием существования предельного (при Mi-»-oo) режима обтекания, свойства которого в существенной области течения не зависят от Mi (С. В. Валландер, 1947; К- Oswatitsch, 1951). Под «существенной» подразумевается область течения между передней, наиболее интенсивной, частью головной ударной волны и поверхностью обтекаемого тела, не слишком далеко от его передней части (подчеркнем, что именно эта область, с наибольшим давлением, определяет действующие на тело силы). Если описывать течение «приведенными» скоростью v/v\, давлением р1р{о'\ и плотностью p/pi как функциями безразмерных координат, то картина обтекания тела заданной формы в указанной области оказывается в пределе независящей от Mi. Дело в том, что, будучи выраженными через эти переменные, оказываются независящими от Mi не только гидродинамические уравнения и граничные условия на поверхности обтекаемого тела, но и все условия на поверхности ударной волны. Ограничение области движения «существенной» частью связано с тем, что пренебрегаемые в последних условиях величины — относительного порядка l/М2 sin2q>, где q> — угол между vi и поверхностью
разрыва; на больших расстояниях, где интенсивность ударной волны мала, этот угол стремится к углу Маха arcsin(l/Mi)« 1/М], так что параметр разложения перестает быть малым: 1/М2 sin2<p ~ ~ 1 ').
Задача
Определить подъемную силу, дей- ствующую на плоское крыло бесконеч- рис 1зо ного размаха, наклоненное к направ-
лению движения под малым углом атаки а при Mia^Sl (R. D. Linnell, 1949). Решение. Картина обтекания выглядит, как показано на рис. 130: от переднего и от заднего краев пластинки отходят по ударной волне и по волне разрежения, в которых поток поворачивает сначала на угол а, а затем на такой же угол в обратном направлении.
Согласно акустической аналогии задача о стационарном обтекании такой пластинки эквивалентна задаче о нестационарном одномерном движении газа впереди и позади поршня, движущегося равномерно со скоростью avt. Впереди поршня образуется ударная волна, а позади — волна разрежения (см. задачи 1, 2 § 99). Воспользовавшись полученными там результатами, находим искомую подъемную силу как разность давлений, действующих на обе стороны пластинки. Коэффициент подъемной силы:
(где К = aMi). При /( 5» 2/ (у — 1) под пластинкой образуется область вакуума и второй член должен быть опущен. В области 1 < Mi < 1/а эта формула переходит в формулу Ct — 4a/Mi, даваемую линеаризованной теорией, в соответствии с тем, что здесь перекрываются области применимости той и другой.