
- •§ 1. Уравнение непрерывности
- •§ Pvrff,
- •§ 2. Уравнение Эйлера
- •§ 3. Гидростатика
- •§ 4. Условие отсутствия конвекции
- •§ 5. Уравнение Бернулли
- •§ 6. Поток энергии
- •§ 7. Поток импульса
- •§ 8. Сохранение циркуляции скорости
- •§ 9. Потенциальное движение
- •§ 10. Несжимаемая жидкость
- •§ 12. Гравитационные волны
- •§ 13. Внутренние волны в несжимаемой жидкости
- •§ 14. Волны во вращающейся жидкости
- •Глава II
- •§ 15. Уравнения движения вязкой жидкости
- •§ 16. Диссипация энергии в несжимаемой жидкости
- •§17. Течение по трубе
- •§ 18. Движение жидкости между вращающимися цилиндрами
- •§ 19. Закон подобия
- •§ 20. Течение при малых числах Рейнольдса
- •§ 21. Ламинарный след
- •§ 22. Вязкость суспензий
- •§ 23. Точные решения уравнений движения вязкой жидкости
- •§ 24. Колебательное движение в вязкой жидкости
- •§ 25. Затухание гравитационных волн
- •Глава III
- •§ 26. Устойчивость стационарного движения жидкости
- •§ 27. Устойчивость вращательного движения жидкости
- •§ 29. Неустойчивость тангенциальных разрывов
- •§ 30. Квазипериодическое движение и синхронизация частот3)
- •§ 31. Странный аттрактор
- •§ 32. Переход к турбулентности путем удвоения периодов
- •§ 33. Развитая турбулентность
- •§ 34. Корреляционные функции скоростей
- •§ 35. Турбулентная область и явление отрыва
- •§ 36. Турбулентная струя
- •§ 37. Турбулентный след
- •§ 38. Теорема Жуковского
- •Глава IV
- •§ 39. Ламинарный пограничный слой
- •1. Определить толщину пограничного слоя вблизи критической точки (см. § 10) на обтекаемом жидкостью теле.
- •2. Определить движение в пограничном слое при конфузорном (см. § 23) течении между двумя пересекающимися плоскостями (к.. Pohlhausen, 1921).
- •§ 41. Устойчивость движения в ламинарном пограничном слое
- •2) Эта аналогия указана а в. Тимофеевым (1979) и а а Андроновым и а л. Фабрикантом (1979); ниже мы следуем изложению а. В. Тимофеева.
- •8) При V"(y) шг 0 уравнение (41,2) вообще не имеет решений, удовлетворяющих необходимым граничным условиям.
- •§ 42. Логарифмический профиль скоростей
- •§ 43. Турбулентное течение в трубах
- •§ 44. Турбулентный пограничный слой
- •§ 45. Кризис сопротивления
- •§ 46. Хорошо обтекаемые тела
- •§ 47. Индуктивное сопротивление
- •§ 48. Подъёмная сила тонкого крыла
- •S2(£)-Citt) 6-«
- •Глава V
- •§ 49. Общее уравнение переноса тепла
- •§ 50. Теплопроводность в несжимаемой жидкости
- •§ 51. Теплопроводность в неограниченной среде
- •§ 52. Теплопроводность в ограниченной среде
- •§ 53. Закон подобия для теплопередачи
- •§ 54. Теплопередача в пограничном слое
- •ВгТт « - у«р-
- •§ 55. Нагревание тела в движущейся жидкости
- •§ 56. Свободная конвекция
- •§ 57. Конвективная неустойчивость неподвижной жидкости
- •§ 58. Уравнения гидродинамики для жидкой смеси
- •§ 59. Коэффициенты диффузии и термодиффузии
- •§ 60. Диффузия взвешенных в жидкости частиц
- •Глава VII
- •§ 61. Формула Лапласа
- •§ 62. Капиллярные волны
- •§ 63. Влияние адсорбированных пленок на движение жидкости
- •Глава VIII
- •§ 64. Звуковые волны
- •§ 66. Энергия и импульс звуковых волн
- •§ 66. Отражение и преломление звуковых волн
- •§ 67. Геометрическая акустика
- •§ 68. Распространение звука в движущейся среде
- •§ 69. Собственные колебания
- •§ 70. Сферические волны
- •§71. Цилиндрические волны
- •§ 72. Общее решение волнового уравнения
- •Ctjc42-(X-q2- (*/-г,)2'
- •§ 73. Боковая волна
- •§ 74. Излучение звука
- •§ 75. Возбуждение звука турбулентностью
- •V 1г' 4я j дхидх1к
- •§ 76. Принцип взаимности
- •§ 77. Распространение звука по трубке
- •§ 78. Рассеяние звука
- •§ 79. Поглощение звука
- •4. Определить дополнительное поглощение звука, распространяющегося в смеси двух веществ, связанное с диффузией (и. Г. Шапошников и 3. А Гольдберг, 1952).
- •§ 80. Акустическое течение
- •§ 81. Вторая вязкость
- •Глава IX
- •§ 82. Распространение возмущений в потоке сжимаемого газа
- •2) Во избежание недоразумений оговорим, что если перед обтекаемым телом возникает ударная волна, то эта область несколько увеличивается (см. § 122).
- •§ 83. Стационарный поток сжимаемого газа
- •§ 84. Поверхности разрыва
- •§ 85. Ударная адиабата
- •2) Такой выбор системы координат будет подразумеваться везде в этой главе, за исключением § 92.
- •§ 86. Ударные волны слабой интенсивности
- •§ 87] Направление изменения величин в ударной волне 463
- •§ 87. Направление изменения величин в ударной волне
- •§ 88. Эволюционность ударных волн
- •§ 89. Ударные волны в политропном газе
- •1. Получить формулу
- •§ 90. Гофрировочная неустойчивость ударных волн
- •2) Сравните с аналогичной ситуацией для тангенциальных разрывов — задача 2 § 84.
- •1) Эта неустойчивость тоже была указана с. П. Дьяковым (1954); правильное значение нижней границы в (90,17) найдено в. М. Конторовичем (1957).
- •§ 91. Распространение ударной волны по трубе
- •§ 92. Косая ударная волна
- •§ 93. Ширина ударных волн
- •§ 94. Ударные волны в релаксирующей среде
- •§ 96. Слабые разрывы
- •Глава X
- •§ 97. Истечение газа через сопло
- •§ 98. Вязкое движение сжимаемого газа по трубе
- •§ 99. Одномерное автомодельное движение
- •5. Определить движение в изотермической автомодельной волне разрежения.
- •§ 100. Разрывы в начальных условиях
- •§ 101. Одномерные бегущие волны
- •§ 102. Образование разрывов в звуковой волне
- •§ 103. Характеристики
- •§ 104. Инварианты Римана
- •§ 105. Произвольное одномерное движение сжимаемого газа
- •§ 106. Задача о сильном взрыве
- •§ 107. Сходящаяся сферическая ударная волна
- •2) Эта задача была рассмотрена независимо Гудерлеем (о. Guderleu, 1942) и л. Д. Ландау и к. П. Станюковичем (1944, опубликовано в 1955).
- •§ 108. Теория «мелкой воды»
- •Глава XI
- •§ 109. Волна разрежения
- •§ 111. Пересечение ударных волн с твердой поверхностью
- •§ 112. Сверхзвуковое обтекание угла
- •§ 113. Обтекание конического острия
- •Глава XII
- •§ 114. Потенциальное движение сжимаемого газа
- •§ 115. Стационарные простые волны
- •§ 116. Уравнение Чаплыгина (общая задача
- •§ 117. Характеристики плоского стационарного течения
- •§ 118. Уравнение Эйлера — Трикоми. Переход через звуковую скорость
- •§1191 Решение уравнения эйлера —трикоми 619
- •§ 119. Решения уравнения Эйлера — Трикоми вблизи неособых точек звуковой поверхности
- •§ 120. Обтекание со звуковой скоростью
- •§ 121. Отражение слабого разрыва от звуковой линии
- •Глава XIII
- •§ 122. Образование ударных воли при сверхзвуковом обтекании тел
- •§ 123. Сверхзвуковое обтекание заостренного тела
- •§ 124. Дозвуковое обтекание тонкого крыла
- •§ 125. Сверхзвуковое обтекание крыла
- •§ 126. Околозвуковой закон подобия
- •§ 127. Гиперзвуковой закон подобия
- •Глава XIV
- •§ 128. Медленное горение
- •§ 129. Детонация
- •§ 130. Распространение детонационной волны
- •§ 131. Соотношение между различными режимами горения
- •§ 132. Конденсационные скачки
- •Глава XV
- •§ 133. Тензор энергии-импульса жидкости
- •§ 134. Релятивистские гидродинамические уравнения
- •§ 135. Ударные волны в релятивистской гидродинамике
- •§ 136. Релятивистские уравнения движения вязкой и теплопроводной среды
- •§ 137. Основные свойства сверхтекучей жидкости
- •§ 138. Термомеханический эффект
- •§ 139. Уравнения гидродинамики сверхтекучей жидкости
- •§ 140. Диссипативные процессы в сверхтекучей жидкости
- •§ 141. Распространение звука в сверхтекучей жидкости
§ 124. Дозвуковое обтекание тонкого крыла
Рассмотрим обтекание хорошо обтекаемого тонкого «крыла» дозвуковым потоком сжимаемого газа. Как и в несжимаемом газе, хорошо обтекаемое дозвуковым потоком крыло должно быть тонким и иметь заостренную заднюю и закругленную переднюю кромки; угол атаки должен быть малым. Выберем направление обтекания в качестве оси х, а ось z —в направлении размаха крыла.
Скорость газа во всем пространстве') будет лишь незначительно отличаться от скорости Vi натекающего потока, так что можно применять линеаризованное уравнение (114,4) для потенциала:
<'-*•)£- + £■ + ■&-<>. 024..)
На поверхности крыла (которую будем называть поверхностью С) скорость должна быть направлена по касательной к ней; вводя единичный вектор п нормали к поверхности крыла, напишем это условие в виде
Поскольку крыло обладает уплощенной формой и угол атаки мал, то нормаль п направлена почти параллельно оси у, так что \пу\ близко к единице, а пх, пг малы. В написанном условии мы можем поэтому опустить малые члены второго порядка
пу и пг-~, а вместо пу написать ±1 (+1 на верхней поверхности крыла и —1 на нижней). Таким образом, граничное условие к уравнению (124,1) приобретает вид
о,п,±-Ц- = 0. (124,2)
В силу предположенной тонкости крыла значение ду/ду на его поверхности можно вычислять просто как предел при г/-*-0.
Задачу о решении уравнения (124,1) с условием (124,2) можно легко привести к задаче об обтекании несжимаемой жидкостью. Для этого введем вместо координат х, у, z переменные
х' = х, у' = ул/1 -М?, z' = z\J\ - М?. (124,3)
В этих переменных уравнение (124,1) принимает вид
') За исключением лишь небольшой области вблизи передней кромки крыла — вблизи линии остановки газа.
дх" ' ду" • дг"
§ 124]
ДОЗВУКОВОЕ ОБТЕКАНИЕ ТОНКОГО КРЫЛА
649
т. е. переходит в уравнение Лапласа. Что касается формы обтекаемой поверхности, то введем вместо нее другую, С, оставив неизменным профиль сечений крыла поверхностями, параллельными плоскости х, у, уменьшив только в отношении (l —Mi)1'2 все размеры вдоль размаха крыла (оси г).
Граничное условие (124,2) приобретает тогда вид
fi«,±-0-Vi-M2 =0,
и для приведения его к обычному виду введем вместо ср новый потенциал ср' согласно
Ф' = ФУ1 -М2. (124,5)
Для ср' будем иметь то же уравнение Лапласа и граничное условие
vinx±^r = 0, (124,6)
которое должно удовлетворяться при у' = 0.
Но уравнение (124,4) с граничным условием (124,6) есть уравнение, которому должен удовлетворять потенциал скорости несжимаемой жидкости, обтекающей тело с поверхностью С. Таким образом, задача об определении распределения скоростей при обтекании крыла с поверхностью С сжимаемой жидкостью сводится к нахождению распределения скоростей при обтекании несжимаемой жидкостью крыла с формой поверхности С.
Рассмотрим, далее, действующую на крыло подъемную силу Fy. Раньше всего замечаем, что произведенный в § 38 вывод формулы Жуковского (38,4) полностью применим и к сжимаемой жидкости, поскольку вместо переменной плотности р жидкости все равно надо в том же приближении писать постоянную величину pi. Таким образом,
Fy = -PlVl\Tdz, (124,7)
где интегрирование производится по всей длине 1Х размаха кры- ла. Из соотношения (124,5 )и одинаковости поперечных профи- лей крыльев С и С следует, что циркуляция Г скорости при об- текании крыла С сжимаемой жидкостью связана с циркуляцией Г' скорости при обтекании крыла С несжимаемой жидкостью соотношением
r==rVl — М?. (124,8)
Подставляя это в (124,7) и переходя от интегрирования по dz к интегрированию по dz', получим:
Величина, стоящая в числителе, представляет собой подъемную силу, действующую на крыло С в несжимаемой жидкости. Обозначая ее посредством Fy, имеем:
А
1-М?
у
F„ . F'
С
(где 1Х, 1г и 1Х, /г = /гд/1 — М2 — длины крыльев С и С вдоль осей х и z), перепишем это равенство в виде
Су= (124,10)
yi-м2
Для крыльев достаточно большого размаха (с постоянным вдоль размаха профилем сечения) коэффициент подъемной силы в несжимаемой жидкости пропорционален углу атаки и не зависит от длины и ширины крыла:
Су = const -а, (124,11)
где const зависит только от формы профиля сечения (см. § 46). В этом случае можно поэтому написать вместо (124,10)
с(0)
С*=-Т=%' (124,12)
где Су и Су0)— коэффициенты подъемной силы одного и того же крыла соответственно в потоках сжимаемого и несжимаемого газа. Таким образом, мы получим такое правило: подъемная сила, действующая на длинное крыло в потоке сжимаемого газа, в О — М2)"1'2 раз больше подъемной силы, действующей на такое же крыло (при том же, в частности, угле атаки) в потоке несжимаемого газа (L. Prandtl, 1922; Н. Glauert, 1928).
Аналогичные соотношения можно получить и для силы сопротивления. Наряду с формулой Жуковского для подъемной силы полностью переносится в теорию сжимаемой жидкости также и формула (47,4) для индуктивного сопротивления крыла. Произведя в ней те же преобразования (124,3) и (124,8), получим: где Fx — сопротивление крыла С в несжимаемой жидкости. При увеличении длины размаха индуктивное сопротивление стремится к постоянному пределу (§ 47). Поэтому для достаточно длинных крыльев можно заменить на F^ (сопротивление в несжимаемой жидкости того же крыла С, к которому относится Fx). Тогда для коэффициента сопротивления имеем:
С(0)
с* = ТГмГ (124Л4)
Сравнив с (124,12), мы видим, что при переходе от несжимаемой жидкости к сжимаемой остается неизменным отношение
С у/С х-
Все изложенные здесь результаты, разумеется, неприменимы при слишком близких к единице значениях Мь когда вообще становится неприменимой линеаризованная теория.