
- •§ 1. Уравнение непрерывности
- •§ Pvrff,
- •§ 2. Уравнение Эйлера
- •§ 3. Гидростатика
- •§ 4. Условие отсутствия конвекции
- •§ 5. Уравнение Бернулли
- •§ 6. Поток энергии
- •§ 7. Поток импульса
- •§ 8. Сохранение циркуляции скорости
- •§ 9. Потенциальное движение
- •§ 10. Несжимаемая жидкость
- •§ 12. Гравитационные волны
- •§ 13. Внутренние волны в несжимаемой жидкости
- •§ 14. Волны во вращающейся жидкости
- •Глава II
- •§ 15. Уравнения движения вязкой жидкости
- •§ 16. Диссипация энергии в несжимаемой жидкости
- •§17. Течение по трубе
- •§ 18. Движение жидкости между вращающимися цилиндрами
- •§ 19. Закон подобия
- •§ 20. Течение при малых числах Рейнольдса
- •§ 21. Ламинарный след
- •§ 22. Вязкость суспензий
- •§ 23. Точные решения уравнений движения вязкой жидкости
- •§ 24. Колебательное движение в вязкой жидкости
- •§ 25. Затухание гравитационных волн
- •Глава III
- •§ 26. Устойчивость стационарного движения жидкости
- •§ 27. Устойчивость вращательного движения жидкости
- •§ 29. Неустойчивость тангенциальных разрывов
- •§ 30. Квазипериодическое движение и синхронизация частот3)
- •§ 31. Странный аттрактор
- •§ 32. Переход к турбулентности путем удвоения периодов
- •§ 33. Развитая турбулентность
- •§ 34. Корреляционные функции скоростей
- •§ 35. Турбулентная область и явление отрыва
- •§ 36. Турбулентная струя
- •§ 37. Турбулентный след
- •§ 38. Теорема Жуковского
- •Глава IV
- •§ 39. Ламинарный пограничный слой
- •1. Определить толщину пограничного слоя вблизи критической точки (см. § 10) на обтекаемом жидкостью теле.
- •2. Определить движение в пограничном слое при конфузорном (см. § 23) течении между двумя пересекающимися плоскостями (к.. Pohlhausen, 1921).
- •§ 41. Устойчивость движения в ламинарном пограничном слое
- •2) Эта аналогия указана а в. Тимофеевым (1979) и а а Андроновым и а л. Фабрикантом (1979); ниже мы следуем изложению а. В. Тимофеева.
- •8) При V"(y) шг 0 уравнение (41,2) вообще не имеет решений, удовлетворяющих необходимым граничным условиям.
- •§ 42. Логарифмический профиль скоростей
- •§ 43. Турбулентное течение в трубах
- •§ 44. Турбулентный пограничный слой
- •§ 45. Кризис сопротивления
- •§ 46. Хорошо обтекаемые тела
- •§ 47. Индуктивное сопротивление
- •§ 48. Подъёмная сила тонкого крыла
- •S2(£)-Citt) 6-«
- •Глава V
- •§ 49. Общее уравнение переноса тепла
- •§ 50. Теплопроводность в несжимаемой жидкости
- •§ 51. Теплопроводность в неограниченной среде
- •§ 52. Теплопроводность в ограниченной среде
- •§ 53. Закон подобия для теплопередачи
- •§ 54. Теплопередача в пограничном слое
- •ВгТт « - у«р-
- •§ 55. Нагревание тела в движущейся жидкости
- •§ 56. Свободная конвекция
- •§ 57. Конвективная неустойчивость неподвижной жидкости
- •§ 58. Уравнения гидродинамики для жидкой смеси
- •§ 59. Коэффициенты диффузии и термодиффузии
- •§ 60. Диффузия взвешенных в жидкости частиц
- •Глава VII
- •§ 61. Формула Лапласа
- •§ 62. Капиллярные волны
- •§ 63. Влияние адсорбированных пленок на движение жидкости
- •Глава VIII
- •§ 64. Звуковые волны
- •§ 66. Энергия и импульс звуковых волн
- •§ 66. Отражение и преломление звуковых волн
- •§ 67. Геометрическая акустика
- •§ 68. Распространение звука в движущейся среде
- •§ 69. Собственные колебания
- •§ 70. Сферические волны
- •§71. Цилиндрические волны
- •§ 72. Общее решение волнового уравнения
- •Ctjc42-(X-q2- (*/-г,)2'
- •§ 73. Боковая волна
- •§ 74. Излучение звука
- •§ 75. Возбуждение звука турбулентностью
- •V 1г' 4я j дхидх1к
- •§ 76. Принцип взаимности
- •§ 77. Распространение звука по трубке
- •§ 78. Рассеяние звука
- •§ 79. Поглощение звука
- •4. Определить дополнительное поглощение звука, распространяющегося в смеси двух веществ, связанное с диффузией (и. Г. Шапошников и 3. А Гольдберг, 1952).
- •§ 80. Акустическое течение
- •§ 81. Вторая вязкость
- •Глава IX
- •§ 82. Распространение возмущений в потоке сжимаемого газа
- •2) Во избежание недоразумений оговорим, что если перед обтекаемым телом возникает ударная волна, то эта область несколько увеличивается (см. § 122).
- •§ 83. Стационарный поток сжимаемого газа
- •§ 84. Поверхности разрыва
- •§ 85. Ударная адиабата
- •2) Такой выбор системы координат будет подразумеваться везде в этой главе, за исключением § 92.
- •§ 86. Ударные волны слабой интенсивности
- •§ 87] Направление изменения величин в ударной волне 463
- •§ 87. Направление изменения величин в ударной волне
- •§ 88. Эволюционность ударных волн
- •§ 89. Ударные волны в политропном газе
- •1. Получить формулу
- •§ 90. Гофрировочная неустойчивость ударных волн
- •2) Сравните с аналогичной ситуацией для тангенциальных разрывов — задача 2 § 84.
- •1) Эта неустойчивость тоже была указана с. П. Дьяковым (1954); правильное значение нижней границы в (90,17) найдено в. М. Конторовичем (1957).
- •§ 91. Распространение ударной волны по трубе
- •§ 92. Косая ударная волна
- •§ 93. Ширина ударных волн
- •§ 94. Ударные волны в релаксирующей среде
- •§ 96. Слабые разрывы
- •Глава X
- •§ 97. Истечение газа через сопло
- •§ 98. Вязкое движение сжимаемого газа по трубе
- •§ 99. Одномерное автомодельное движение
- •5. Определить движение в изотермической автомодельной волне разрежения.
- •§ 100. Разрывы в начальных условиях
- •§ 101. Одномерные бегущие волны
- •§ 102. Образование разрывов в звуковой волне
- •§ 103. Характеристики
- •§ 104. Инварианты Римана
- •§ 105. Произвольное одномерное движение сжимаемого газа
- •§ 106. Задача о сильном взрыве
- •§ 107. Сходящаяся сферическая ударная волна
- •2) Эта задача была рассмотрена независимо Гудерлеем (о. Guderleu, 1942) и л. Д. Ландау и к. П. Станюковичем (1944, опубликовано в 1955).
- •§ 108. Теория «мелкой воды»
- •Глава XI
- •§ 109. Волна разрежения
- •§ 111. Пересечение ударных волн с твердой поверхностью
- •§ 112. Сверхзвуковое обтекание угла
- •§ 113. Обтекание конического острия
- •Глава XII
- •§ 114. Потенциальное движение сжимаемого газа
- •§ 115. Стационарные простые волны
- •§ 116. Уравнение Чаплыгина (общая задача
- •§ 117. Характеристики плоского стационарного течения
- •§ 118. Уравнение Эйлера — Трикоми. Переход через звуковую скорость
- •§1191 Решение уравнения эйлера —трикоми 619
- •§ 119. Решения уравнения Эйлера — Трикоми вблизи неособых точек звуковой поверхности
- •§ 120. Обтекание со звуковой скоростью
- •§ 121. Отражение слабого разрыва от звуковой линии
- •Глава XIII
- •§ 122. Образование ударных воли при сверхзвуковом обтекании тел
- •§ 123. Сверхзвуковое обтекание заостренного тела
- •§ 124. Дозвуковое обтекание тонкого крыла
- •§ 125. Сверхзвуковое обтекание крыла
- •§ 126. Околозвуковой закон подобия
- •§ 127. Гиперзвуковой закон подобия
- •Глава XIV
- •§ 128. Медленное горение
- •§ 129. Детонация
- •§ 130. Распространение детонационной волны
- •§ 131. Соотношение между различными режимами горения
- •§ 132. Конденсационные скачки
- •Глава XV
- •§ 133. Тензор энергии-импульса жидкости
- •§ 134. Релятивистские гидродинамические уравнения
- •§ 135. Ударные волны в релятивистской гидродинамике
- •§ 136. Релятивистские уравнения движения вязкой и теплопроводной среды
- •§ 137. Основные свойства сверхтекучей жидкости
- •§ 138. Термомеханический эффект
- •§ 139. Уравнения гидродинамики сверхтекучей жидкости
- •§ 140. Диссипативные процессы в сверхтекучей жидкости
- •§ 141. Распространение звука в сверхтекучей жидкости
§ 117. Характеристики плоского стационарного течения
Некоторые общие свойства характеристик плоского стационарного (сверхзвукового) движения были рассмотрены уже в § 82. Выведем теперь уравнения, определяющие эти линии по заданному решению уравнений движения.
В плоском стационарном сверхзвуковом потоке имеется в общем случае три семейства характеристик. По двум из них (которые мы будем называть характеристиками С+ и С_) распространяются все малые возмущения, за исключением лишь возмущений энетропии и ротора скорости; последние распространяются по характеристикам третьего семейства Со, совпадающим с линиями тока. Для заданного течения линии тока известны, и вопрос заключается в определении характеристик первых двух семейств.
Направления проходящих через каждую точку плоскости характеристик С+ и С_ расположены по обе стороны от проходящей через ту же точку линии тока и образуют с ней угол, равный местному значению угла возмущений а (рис. 51). Обозначим посредством то тангенс угла наклона к оси (угловой коэффициент) линии тока в данной ее точке, а посредством т+ и т- — угловые коэффициенты характеристик С+ и С_. Тогда по формуле сложения тангенсов напишем:
1 + m0m+ *£а> j mQm_ T£a>
откуда
± 1 =F m0 tg a
(верхние знаки относятся везде к С+, а нижние — к С_). Подставив сюда
V С
т0 = —, tga:
*) См., например, Седов Л. И. Плоские задачи гидродинамики и аэродинамики. — М.: Наука, 1966, гл. X; Мизсс Р. Математическая теория течений сжимаемой жидкости. — М.: ИЛ, 1961, § 20.
2 — <
и. произведя сокращения, получим следующее выражение для угловых коэффициентов характеристик:
(117,1)
Если распределение скоростей в потоке известно, то это есть дифференциальное уравнение, определяющее характеристики С+ и. С-1).
Наряду с характеристиками в плоскости х, у можно рассматривать также и характеристики в плоскости годографа, в особенности полезные при изучении изэнтропического потенциального течения, о котором мы и будем ниже говорить. С математической точки зрения это — характеристики уравнения Чаплыгина (116,8) (принадлежащего при v>c к гиперболическому типу). Следуя известному из математической физики общему методу (см. § 103), с помощью коэффициентов этого уравнения составляем уравнение характеристик:
dv2 + dQ2
или
Определяемые этим уравнением характеристики не зависят от конкретного решения уравнения Чаплыгина, что связано с независимостью коэффициентов последнего от Ф. Характеристики в плоскости годографа, являющиеся отображением характеристик С+ и С_ в физической плоскости, мы будем условно называть соответственно характеристиками Г+ и Г- (знаки в (117,2) соответствуют этому условию).
')
Уравнение (117,1) определяет характеристики
и для стационарного осесимметрического
течения, если только заменить vy
и
у
на
vr
и
г, где г
—
цилиндрическая координата (расстояние
от оси симметрии — оси х);
ясно,
что весь вывод не изменится, если вместо
плоскости х,
у
рассматривать
проходящую через ось симметрии
плоскость х,
т.
странстве одного из инвариантов Римана. Произвольной постоянной в формулах (115,3) и (115,4) является ср*; исключая из этих формул параметр ср, получим:
arc
sin
Характеристики
в плоскости годографа представляют
собой семейство эпициклоид,
заполняющих пространство между
двумя vy
окружностями
радиусов (рис. 117):
V = с* и
Для изэнтропического потенциального движения характеристики Г+, Г_ обладают следующим важным свойством: семейства характеристик Г+ и Г_ ортогональны соответственно характеристикам С- и С+ (предполагается, что оси координат х, у изображены параллельными осям vx,
Для доказательства этого утверждения исходим из уравнения (114,3) для потенциала плоского течения, имеющего вид
дхду ду2
:0
(117,4)
(существенно, что в нем отсутствует свободный член).
Угловые коэффициенты т± характеристик С± определяются как корни квадратного уравнения
Ат2 — 2Вт + С = 0.
Рассмотрим выражение dv+ dx~ + dv+ dy~, в котором дифференциалы скорости берутся вдоль характеристики Г+, а дифференциалы координат — вдоль С_. Имеем тождественно:
-j-
dx+
dx
-J^-
(dx+
dy~ +
dx-
dy+)
+
-0-
dy+
dy~.
4) Это утверждение не относится к характеристикам осесимметрического движения в плоскости х, г\
_ d2g> ~ дх2
Разделив это выражение на dx+dx~, получим в качестве коэффициентов при д2у/дхду и д2у/ду2 соответственно т+ + т~ = 2BIA и т+т- = С/А, после чего ясно, что в силу уравнения (117,4) выражение обращается в нуль. Таким образом,
dv + dx~ + dv+ dy~ = dv+ dr~ = 0. Аналогично получим:
dv~dr+ = 0.
Эти равенства и выражают собой сделанное выше утверждение.