
- •§ 1. Уравнение непрерывности
- •§ Pvrff,
- •§ 2. Уравнение Эйлера
- •§ 3. Гидростатика
- •§ 4. Условие отсутствия конвекции
- •§ 5. Уравнение Бернулли
- •§ 6. Поток энергии
- •§ 7. Поток импульса
- •§ 8. Сохранение циркуляции скорости
- •§ 9. Потенциальное движение
- •§ 10. Несжимаемая жидкость
- •§ 12. Гравитационные волны
- •§ 13. Внутренние волны в несжимаемой жидкости
- •§ 14. Волны во вращающейся жидкости
- •Глава II
- •§ 15. Уравнения движения вязкой жидкости
- •§ 16. Диссипация энергии в несжимаемой жидкости
- •§17. Течение по трубе
- •§ 18. Движение жидкости между вращающимися цилиндрами
- •§ 19. Закон подобия
- •§ 20. Течение при малых числах Рейнольдса
- •§ 21. Ламинарный след
- •§ 22. Вязкость суспензий
- •§ 23. Точные решения уравнений движения вязкой жидкости
- •§ 24. Колебательное движение в вязкой жидкости
- •§ 25. Затухание гравитационных волн
- •Глава III
- •§ 26. Устойчивость стационарного движения жидкости
- •§ 27. Устойчивость вращательного движения жидкости
- •§ 29. Неустойчивость тангенциальных разрывов
- •§ 30. Квазипериодическое движение и синхронизация частот3)
- •§ 31. Странный аттрактор
- •§ 32. Переход к турбулентности путем удвоения периодов
- •§ 33. Развитая турбулентность
- •§ 34. Корреляционные функции скоростей
- •§ 35. Турбулентная область и явление отрыва
- •§ 36. Турбулентная струя
- •§ 37. Турбулентный след
- •§ 38. Теорема Жуковского
- •Глава IV
- •§ 39. Ламинарный пограничный слой
- •1. Определить толщину пограничного слоя вблизи критической точки (см. § 10) на обтекаемом жидкостью теле.
- •2. Определить движение в пограничном слое при конфузорном (см. § 23) течении между двумя пересекающимися плоскостями (к.. Pohlhausen, 1921).
- •§ 41. Устойчивость движения в ламинарном пограничном слое
- •2) Эта аналогия указана а в. Тимофеевым (1979) и а а Андроновым и а л. Фабрикантом (1979); ниже мы следуем изложению а. В. Тимофеева.
- •8) При V"(y) шг 0 уравнение (41,2) вообще не имеет решений, удовлетворяющих необходимым граничным условиям.
- •§ 42. Логарифмический профиль скоростей
- •§ 43. Турбулентное течение в трубах
- •§ 44. Турбулентный пограничный слой
- •§ 45. Кризис сопротивления
- •§ 46. Хорошо обтекаемые тела
- •§ 47. Индуктивное сопротивление
- •§ 48. Подъёмная сила тонкого крыла
- •S2(£)-Citt) 6-«
- •Глава V
- •§ 49. Общее уравнение переноса тепла
- •§ 50. Теплопроводность в несжимаемой жидкости
- •§ 51. Теплопроводность в неограниченной среде
- •§ 52. Теплопроводность в ограниченной среде
- •§ 53. Закон подобия для теплопередачи
- •§ 54. Теплопередача в пограничном слое
- •ВгТт « - у«р-
- •§ 55. Нагревание тела в движущейся жидкости
- •§ 56. Свободная конвекция
- •§ 57. Конвективная неустойчивость неподвижной жидкости
- •§ 58. Уравнения гидродинамики для жидкой смеси
- •§ 59. Коэффициенты диффузии и термодиффузии
- •§ 60. Диффузия взвешенных в жидкости частиц
- •Глава VII
- •§ 61. Формула Лапласа
- •§ 62. Капиллярные волны
- •§ 63. Влияние адсорбированных пленок на движение жидкости
- •Глава VIII
- •§ 64. Звуковые волны
- •§ 66. Энергия и импульс звуковых волн
- •§ 66. Отражение и преломление звуковых волн
- •§ 67. Геометрическая акустика
- •§ 68. Распространение звука в движущейся среде
- •§ 69. Собственные колебания
- •§ 70. Сферические волны
- •§71. Цилиндрические волны
- •§ 72. Общее решение волнового уравнения
- •Ctjc42-(X-q2- (*/-г,)2'
- •§ 73. Боковая волна
- •§ 74. Излучение звука
- •§ 75. Возбуждение звука турбулентностью
- •V 1г' 4я j дхидх1к
- •§ 76. Принцип взаимности
- •§ 77. Распространение звука по трубке
- •§ 78. Рассеяние звука
- •§ 79. Поглощение звука
- •4. Определить дополнительное поглощение звука, распространяющегося в смеси двух веществ, связанное с диффузией (и. Г. Шапошников и 3. А Гольдберг, 1952).
- •§ 80. Акустическое течение
- •§ 81. Вторая вязкость
- •Глава IX
- •§ 82. Распространение возмущений в потоке сжимаемого газа
- •2) Во избежание недоразумений оговорим, что если перед обтекаемым телом возникает ударная волна, то эта область несколько увеличивается (см. § 122).
- •§ 83. Стационарный поток сжимаемого газа
- •§ 84. Поверхности разрыва
- •§ 85. Ударная адиабата
- •2) Такой выбор системы координат будет подразумеваться везде в этой главе, за исключением § 92.
- •§ 86. Ударные волны слабой интенсивности
- •§ 87] Направление изменения величин в ударной волне 463
- •§ 87. Направление изменения величин в ударной волне
- •§ 88. Эволюционность ударных волн
- •§ 89. Ударные волны в политропном газе
- •1. Получить формулу
- •§ 90. Гофрировочная неустойчивость ударных волн
- •2) Сравните с аналогичной ситуацией для тангенциальных разрывов — задача 2 § 84.
- •1) Эта неустойчивость тоже была указана с. П. Дьяковым (1954); правильное значение нижней границы в (90,17) найдено в. М. Конторовичем (1957).
- •§ 91. Распространение ударной волны по трубе
- •§ 92. Косая ударная волна
- •§ 93. Ширина ударных волн
- •§ 94. Ударные волны в релаксирующей среде
- •§ 96. Слабые разрывы
- •Глава X
- •§ 97. Истечение газа через сопло
- •§ 98. Вязкое движение сжимаемого газа по трубе
- •§ 99. Одномерное автомодельное движение
- •5. Определить движение в изотермической автомодельной волне разрежения.
- •§ 100. Разрывы в начальных условиях
- •§ 101. Одномерные бегущие волны
- •§ 102. Образование разрывов в звуковой волне
- •§ 103. Характеристики
- •§ 104. Инварианты Римана
- •§ 105. Произвольное одномерное движение сжимаемого газа
- •§ 106. Задача о сильном взрыве
- •§ 107. Сходящаяся сферическая ударная волна
- •2) Эта задача была рассмотрена независимо Гудерлеем (о. Guderleu, 1942) и л. Д. Ландау и к. П. Станюковичем (1944, опубликовано в 1955).
- •§ 108. Теория «мелкой воды»
- •Глава XI
- •§ 109. Волна разрежения
- •§ 111. Пересечение ударных волн с твердой поверхностью
- •§ 112. Сверхзвуковое обтекание угла
- •§ 113. Обтекание конического острия
- •Глава XII
- •§ 114. Потенциальное движение сжимаемого газа
- •§ 115. Стационарные простые волны
- •§ 116. Уравнение Чаплыгина (общая задача
- •§ 117. Характеристики плоского стационарного течения
- •§ 118. Уравнение Эйлера — Трикоми. Переход через звуковую скорость
- •§1191 Решение уравнения эйлера —трикоми 619
- •§ 119. Решения уравнения Эйлера — Трикоми вблизи неособых точек звуковой поверхности
- •§ 120. Обтекание со звуковой скоростью
- •§ 121. Отражение слабого разрыва от звуковой линии
- •Глава XIII
- •§ 122. Образование ударных воли при сверхзвуковом обтекании тел
- •§ 123. Сверхзвуковое обтекание заостренного тела
- •§ 124. Дозвуковое обтекание тонкого крыла
- •§ 125. Сверхзвуковое обтекание крыла
- •§ 126. Околозвуковой закон подобия
- •§ 127. Гиперзвуковой закон подобия
- •Глава XIV
- •§ 128. Медленное горение
- •§ 129. Детонация
- •§ 130. Распространение детонационной волны
- •§ 131. Соотношение между различными режимами горения
- •§ 132. Конденсационные скачки
- •Глава XV
- •§ 133. Тензор энергии-импульса жидкости
- •§ 134. Релятивистские гидродинамические уравнения
- •§ 135. Ударные волны в релятивистской гидродинамике
- •§ 136. Релятивистские уравнения движения вязкой и теплопроводной среды
- •§ 137. Основные свойства сверхтекучей жидкости
- •§ 138. Термомеханический эффект
- •§ 139. Уравнения гидродинамики сверхтекучей жидкости
- •§ 140. Диссипативные процессы в сверхтекучей жидкости
- •§ 141. Распространение звука в сверхтекучей жидкости
§ 113. Обтекание конического острия
Исследование сверхзвукового стационарного течения вблизи острия на поверхности обтекаемого тела представляет собой трехмерную задачу, и потому несравненно сложнее исследования обтекания угла с линейным краем. Полностью может быть решена задача об осесимметричном обтекании острия, которое мы здесь и рассмотрим.
Вблизи своего конца осесимметрическое острие можно рассматривать как прямой конус кругового сечения, и таким образом, задача состоит в исследовании обтекания конуса однородным потоком, натекающим в направлении оси конуса. С качественной стороны картина выглядит следующим образом.
Как и при аналогичном обтекании плоского угла, должна возникнуть ударная волна (Л. Busemann, 1929); из соображений симметрии очевидно, что эта волна будет представлять собой коническую поверхность, коаксиальную с обтекаемым конусом и имеющую общую с ним вершину (на рис. 114 изображен разрез конуса плоскостью, проходящей через его ооь). Однако в отличие от плоского случая ударная волна не осуществляет здесь поворота скорости газа на полный угол х. необходимый для течения вдоль поверхности конуса (2%—угол раствора конуса). После перехода через поверхность разрыва линии тока искривляются, асимптотически приближаясь к образующим обтекаемого конуса. Это искривление сопровождается непрерывным уплотнением (добавочным к уплотнению в самой волне) и соответственным падением скорости.
ния Хтах ДЛЯ ПЛОСКОГО СЛу-
чая (обтекания клина). Непосредственно за ударной волной движение газа обычно сверхзвуковое, но может быть и дозвуковым (при х, близких к Хтах). Сверхзвуковое за ударной волной течение по мере приближения к поверхности конуса может стать дозвуковым, и тогда на определенной конической поверхности скорость проходит через звуковое значение.
Коническая ударная волна пересекает все линии тока натекающего потока под одинаковым углом, а потому обладает постоянной интенсивностью. Отсюда следует (см. ниже § 114), что и за ударной волной течение будет изэнтропическим и потенциальным.
В силу симметрии задачи и ее автомодельности (отсутствия в ее условиях какой-либо характеристической постоянной длины) очевидно, что распределение всех величин (скорости, давления) в потоке за ударной волной будет функцией только от угла 6 наклона к оси конуса (оси х на рис. 114) радиус-вектора, прове-
') Это может, однако, быть не так при некоторых «экзотических» формах обтекаемого тела Так, существуют указания на отбор волны «сильного» семейства при обтекании конуса на переднем крае широкого тупого тела.
денного в данную точку из вершины конуса. Соответственно уравнения движения сводятся к обыкновенным дифференциальным уравнениям; граничные условия к этим уравнениям на ударной волне определяются уравнением ударной поляры, а на поверхности конуса — требуют параллельности скорости образующим конуса. Эти уравнения, однако, не могут быть проинтегрированы в аналитическом виде и должны решаться численным образом. Отсылая за результатами таких вычислений к оригинальным источникам1), мы ограничимся лишь кривой (рис. 65), дающей зависимость предельного допустимого угла раствора конуса 2хтах как функции от числа Mi. Укажем также, что при Mi —»-1 угол /шах стремится к нулю по закону
Хтах = COnst Д/~^р, (113,1)
как это можно заключить на основании общего околозвукового закона подобия (126,11) (const есть число, не зависящее ни от Мь ни от рода газа).
Замкнутое аналитическое решение задачи об обтекании конуса возможно лишь в предельном случае малых углов раствора конуса (Г/г. Кагтап, N. В. Moor, 1932). Очевидно, что в таком случае скорость газа во всем пространстве будет лишь незначительно отличаться от скорости vi натекающего потока. Обозначив посредством v малую разность между скоростью газа в данной точке и скоростью Vi и введя ее потенциал ср, мы можем применить для последнего линеаризованное уравнение (114,4); если ввести цилиндрические координаты х, г, со с осью вдоль оси конуса (со — полярный угол), это уравнение примет вид
Ш'3г)+-Г&-Г&-Ь «13.2,
или для осесимметрического движения
-*>г0=°. сад
где введено обозначение
6 = (М2-1)1/2. (113,4)
Для того чтобы распределение скорости было функцией только от угла 9, потенциал должен иметь вид ср =xf{%), где g = г/х = = tg 6. Сделав подстановку, получим для функции /(g) уравнение
*)
См. Taylor
G.
/.,
Maccol
J.
W.
—
Proc.
Roy. Soc, 1933,
v.
139A, p.
278;
Maccol
J.
W.
—
Proc.
Roy. Soc, 1937,
v.
159A.
p.
459.
См. также изложение в книге: Кошн
Н.
Е..
Кибгль
И.
А.,
Роне
Н.
В.
Теоретическая
гидромеханика. — М.: Физматгиз, 1963,
ч. II, § 27.
которое решается элементарно. Тривиальное решение / = const соответствует однородному потоку, а второе решение есть
/ = const ( Vl - $%2 - Arch ~).
Граничное условие на поверхности конуса (т. е. при | = tg % « %} гласит:
или f' — Vi%. Отсюда const. = Vix2, и в результате получим следующее окончательное выражение для потенциала (в области
*>рг>)):
Ф = *>if [V*2 - Р^2 - х Arch jp]. (113,6)
Обратим внимание на то, что ф имеет при г—>-0 логарифмическую особенность.
Отсюда находим компоненты скорости:
^ = -f,X2 Arch^, Ur==i^lV^2-pV2. (П3,7>
Давление на поверхности конуса вычисляется с помощью формулы (114,5); благодаря логарифмической особенности ф при г->-0 скорость v, на самой поверхности конуса (т. е. при малых г) велика по сравнению с vx, и потому в формуле для давления должен быть сохранён член с vr. В результате получим:
p-p1 = p1t-2X2(ln^r-|). (113,8)
Все эти формулы, полученные с помощью линеаризованной теории, теряют применимость при слишком больших значениях Мь сравнимых с 1/х (см. § 127).
') В рассматриваемом приближении конус х = fir представляет собой поверхность слабого разрыва. В следующем приближении появляется ударная волна, интенсивность которой (относительный скачок давления) пропорциональна %*, а угол полураствора превосходит угол Маха на величину, тоже пропорциональную х*.