
- •§ 1. Уравнение непрерывности
- •§ Pvrff,
- •§ 2. Уравнение Эйлера
- •§ 3. Гидростатика
- •§ 4. Условие отсутствия конвекции
- •§ 5. Уравнение Бернулли
- •§ 6. Поток энергии
- •§ 7. Поток импульса
- •§ 8. Сохранение циркуляции скорости
- •§ 9. Потенциальное движение
- •§ 10. Несжимаемая жидкость
- •§ 12. Гравитационные волны
- •§ 13. Внутренние волны в несжимаемой жидкости
- •§ 14. Волны во вращающейся жидкости
- •Глава II
- •§ 15. Уравнения движения вязкой жидкости
- •§ 16. Диссипация энергии в несжимаемой жидкости
- •§17. Течение по трубе
- •§ 18. Движение жидкости между вращающимися цилиндрами
- •§ 19. Закон подобия
- •§ 20. Течение при малых числах Рейнольдса
- •§ 21. Ламинарный след
- •§ 22. Вязкость суспензий
- •§ 23. Точные решения уравнений движения вязкой жидкости
- •§ 24. Колебательное движение в вязкой жидкости
- •§ 25. Затухание гравитационных волн
- •Глава III
- •§ 26. Устойчивость стационарного движения жидкости
- •§ 27. Устойчивость вращательного движения жидкости
- •§ 29. Неустойчивость тангенциальных разрывов
- •§ 30. Квазипериодическое движение и синхронизация частот3)
- •§ 31. Странный аттрактор
- •§ 32. Переход к турбулентности путем удвоения периодов
- •§ 33. Развитая турбулентность
- •§ 34. Корреляционные функции скоростей
- •§ 35. Турбулентная область и явление отрыва
- •§ 36. Турбулентная струя
- •§ 37. Турбулентный след
- •§ 38. Теорема Жуковского
- •Глава IV
- •§ 39. Ламинарный пограничный слой
- •1. Определить толщину пограничного слоя вблизи критической точки (см. § 10) на обтекаемом жидкостью теле.
- •2. Определить движение в пограничном слое при конфузорном (см. § 23) течении между двумя пересекающимися плоскостями (к.. Pohlhausen, 1921).
- •§ 41. Устойчивость движения в ламинарном пограничном слое
- •2) Эта аналогия указана а в. Тимофеевым (1979) и а а Андроновым и а л. Фабрикантом (1979); ниже мы следуем изложению а. В. Тимофеева.
- •8) При V"(y) шг 0 уравнение (41,2) вообще не имеет решений, удовлетворяющих необходимым граничным условиям.
- •§ 42. Логарифмический профиль скоростей
- •§ 43. Турбулентное течение в трубах
- •§ 44. Турбулентный пограничный слой
- •§ 45. Кризис сопротивления
- •§ 46. Хорошо обтекаемые тела
- •§ 47. Индуктивное сопротивление
- •§ 48. Подъёмная сила тонкого крыла
- •S2(£)-Citt) 6-«
- •Глава V
- •§ 49. Общее уравнение переноса тепла
- •§ 50. Теплопроводность в несжимаемой жидкости
- •§ 51. Теплопроводность в неограниченной среде
- •§ 52. Теплопроводность в ограниченной среде
- •§ 53. Закон подобия для теплопередачи
- •§ 54. Теплопередача в пограничном слое
- •ВгТт « - у«р-
- •§ 55. Нагревание тела в движущейся жидкости
- •§ 56. Свободная конвекция
- •§ 57. Конвективная неустойчивость неподвижной жидкости
- •§ 58. Уравнения гидродинамики для жидкой смеси
- •§ 59. Коэффициенты диффузии и термодиффузии
- •§ 60. Диффузия взвешенных в жидкости частиц
- •Глава VII
- •§ 61. Формула Лапласа
- •§ 62. Капиллярные волны
- •§ 63. Влияние адсорбированных пленок на движение жидкости
- •Глава VIII
- •§ 64. Звуковые волны
- •§ 66. Энергия и импульс звуковых волн
- •§ 66. Отражение и преломление звуковых волн
- •§ 67. Геометрическая акустика
- •§ 68. Распространение звука в движущейся среде
- •§ 69. Собственные колебания
- •§ 70. Сферические волны
- •§71. Цилиндрические волны
- •§ 72. Общее решение волнового уравнения
- •Ctjc42-(X-q2- (*/-г,)2'
- •§ 73. Боковая волна
- •§ 74. Излучение звука
- •§ 75. Возбуждение звука турбулентностью
- •V 1г' 4я j дхидх1к
- •§ 76. Принцип взаимности
- •§ 77. Распространение звука по трубке
- •§ 78. Рассеяние звука
- •§ 79. Поглощение звука
- •4. Определить дополнительное поглощение звука, распространяющегося в смеси двух веществ, связанное с диффузией (и. Г. Шапошников и 3. А Гольдберг, 1952).
- •§ 80. Акустическое течение
- •§ 81. Вторая вязкость
- •Глава IX
- •§ 82. Распространение возмущений в потоке сжимаемого газа
- •2) Во избежание недоразумений оговорим, что если перед обтекаемым телом возникает ударная волна, то эта область несколько увеличивается (см. § 122).
- •§ 83. Стационарный поток сжимаемого газа
- •§ 84. Поверхности разрыва
- •§ 85. Ударная адиабата
- •2) Такой выбор системы координат будет подразумеваться везде в этой главе, за исключением § 92.
- •§ 86. Ударные волны слабой интенсивности
- •§ 87] Направление изменения величин в ударной волне 463
- •§ 87. Направление изменения величин в ударной волне
- •§ 88. Эволюционность ударных волн
- •§ 89. Ударные волны в политропном газе
- •1. Получить формулу
- •§ 90. Гофрировочная неустойчивость ударных волн
- •2) Сравните с аналогичной ситуацией для тангенциальных разрывов — задача 2 § 84.
- •1) Эта неустойчивость тоже была указана с. П. Дьяковым (1954); правильное значение нижней границы в (90,17) найдено в. М. Конторовичем (1957).
- •§ 91. Распространение ударной волны по трубе
- •§ 92. Косая ударная волна
- •§ 93. Ширина ударных волн
- •§ 94. Ударные волны в релаксирующей среде
- •§ 96. Слабые разрывы
- •Глава X
- •§ 97. Истечение газа через сопло
- •§ 98. Вязкое движение сжимаемого газа по трубе
- •§ 99. Одномерное автомодельное движение
- •5. Определить движение в изотермической автомодельной волне разрежения.
- •§ 100. Разрывы в начальных условиях
- •§ 101. Одномерные бегущие волны
- •§ 102. Образование разрывов в звуковой волне
- •§ 103. Характеристики
- •§ 104. Инварианты Римана
- •§ 105. Произвольное одномерное движение сжимаемого газа
- •§ 106. Задача о сильном взрыве
- •§ 107. Сходящаяся сферическая ударная волна
- •2) Эта задача была рассмотрена независимо Гудерлеем (о. Guderleu, 1942) и л. Д. Ландау и к. П. Станюковичем (1944, опубликовано в 1955).
- •§ 108. Теория «мелкой воды»
- •Глава XI
- •§ 109. Волна разрежения
- •§ 111. Пересечение ударных волн с твердой поверхностью
- •§ 112. Сверхзвуковое обтекание угла
- •§ 113. Обтекание конического острия
- •Глава XII
- •§ 114. Потенциальное движение сжимаемого газа
- •§ 115. Стационарные простые волны
- •§ 116. Уравнение Чаплыгина (общая задача
- •§ 117. Характеристики плоского стационарного течения
- •§ 118. Уравнение Эйлера — Трикоми. Переход через звуковую скорость
- •§1191 Решение уравнения эйлера —трикоми 619
- •§ 119. Решения уравнения Эйлера — Трикоми вблизи неособых точек звуковой поверхности
- •§ 120. Обтекание со звуковой скоростью
- •§ 121. Отражение слабого разрыва от звуковой линии
- •Глава XIII
- •§ 122. Образование ударных воли при сверхзвуковом обтекании тел
- •§ 123. Сверхзвуковое обтекание заостренного тела
- •§ 124. Дозвуковое обтекание тонкого крыла
- •§ 125. Сверхзвуковое обтекание крыла
- •§ 126. Околозвуковой закон подобия
- •§ 127. Гиперзвуковой закон подобия
- •Глава XIV
- •§ 128. Медленное горение
- •§ 129. Детонация
- •§ 130. Распространение детонационной волны
- •§ 131. Соотношение между различными режимами горения
- •§ 132. Конденсационные скачки
- •Глава XV
- •§ 133. Тензор энергии-импульса жидкости
- •§ 134. Релятивистские гидродинамические уравнения
- •§ 135. Ударные волны в релятивистской гидродинамике
- •§ 136. Релятивистские уравнения движения вязкой и теплопроводной среды
- •§ 137. Основные свойства сверхтекучей жидкости
- •§ 138. Термомеханический эффект
- •§ 139. Уравнения гидродинамики сверхтекучей жидкости
- •§ 140. Диссипативные процессы в сверхтекучей жидкости
- •§ 141. Распространение звука в сверхтекучей жидкости
§ 108. Теория «мелкой воды»
Замечательную аналогию движению сжимаемого газа представляет движение в поле тяжести несжимаемой жидкости со свободной поверхностью, если глубина слоя жидкости достаточно мала (мала по сравнению с характеристическими размерами задачи, например, по сравнению с размерами неровностей дна водоема). В этом случае поперечной компонентой скорости жид: кости можно пренебречь по сравнению с продольной (вдоль слоя) скоростью, а последнюю можно считать постоянной вдоль толщины слоя. В этом приближении (называемом гидравлическим) жидкость можно рассматривать как «двухмерную» среду, обладающую в каждой точке определенной скоростью v и, кроме того, характеризующуюся в каждой точке значением величины h — толщины слоя.
Соответствующие общие уравнения движения отличаются от уравнений, полученных в § 12, лишь тем, что изменения величин при движении не должны предполагаться малыми, как это делалось в § 12 при изучении длинных гравитационных волн малой амплитуды; в связи с этим в уравнении Эйлера должны быть сохранены члены второго порядка по скорости. В частности, для одномерного движения жидкости в канале, зависящего только от одной координаты х (и времени), эти уравнения имеют вид
=
0
(Ю8,1>
(глубина h предполагается здесь постоянной вдоль ширины канала).
')
Другой пример автомодельного движения
такого рода представляет задача о
распространении ударной волны,
создаваемой в результате короткого
сильного удара по полупространству,
заполненному газом (Зельдович
Я.
Б.—
Акустич. журнал, 1956, т. 2, с. 29). Изложение
этой задачи можно найти также в
указанной на стр. 461 книге Я.
Б.
Зельдовича
и
Ю.
П.
Рай-зера
(гл.
XII) ив
книге Баренблатта
Г.
И.
Подобие,
автомодельность, промежуточная
асимптотика. — М.: Гидрометеоиздат,
1982, сл. 4.
c = ^gh. (108,2)
Эта скорость играет здесь роль скорости звука в газодинамике. Так же, как это было сделано в § 82, мы можем заключить, что если жидкость движется со скоростями v < с (так называемое спокойное течение), то влияние возмущений распространяется на весь поток как вниз, так и вверх по течению. При движении же со скоростями v > с (стремительное течение) влияние возмущений распространяется лишь на определенные области потока вниз по течению.
Давление р (отсчитываемое от атмосферного давления на свободной поверхности) меняется по глубине жидкости согласно гидростатическому закону p — pg(h— г), где z — высота ^гочки над дном. Полезно заметить, что если ввести величины
р = РА, p=J\pdz = ±pgh2=-^P2, (108,3) о
то уравнения (108,1) примут вид
да , д „ dv , dv I dp /1АГ)
ж + -дТ^ = 0' -д7+итг--тж- <108'4>
формально совпадающий с видом уравнений адиабатического течения политропного газа с у = 2(р оо р2). Это обстоятельство позволяет непосредственно переносить в теорию «мелкой воды» все газодинамические результаты, относящиеся к движению без образования ударных волн. Для последних соотношения в теории мелкой воды отличаются от газодинамических соотношений для идеального газа.
«Ударная волна» в текущей по каналу жидкости представляет собой резкий скачок высоты жидкости ft, а с нею и ее скорости v (так называемый прыжок воды). Соотношения между значениями этих величин по обе стороны разрыва можно получить с помощью условий непрерывности потоков массы и импульса жидкости. Плотность потока массы (отнесенная к 1 см ширины канала) есть j = pvh. Плотность же потока импульса получается интегрированием р + pv2 по глубине жидкости и равна
h
\{p + pv2)dz = ^ + pv2h.
о
Поэтому условия их непрерывности дают два уравнения:
,2 t2
uft = t>2/i2, oft+ = + <108'5)
§ 108]
ТЕОРИЯ «МЕЛКОЙ ВОДЫ»
Эти соотношения устанавливают связь между четырьмя величинами: V\, v2, hi, h2, две из которых могут быть заданы произвольно. Выражая скорости v\, v2 через высоты hi, h2, получим:
у> = Т1Г (*i + *»)• v2> = Т17 (*• + *»)• (108'6>
Потоки же энергии по обе стороны разрыва неодинаковы; их разность определяет количество энергии, диссипируемой (в 1 с) в разрыве. Плотность потока энергии вдоль канала равна
h
ч=$ (i+4) ?v йг=т >' (gA+и2)-
о
Воспользовавшись выражениями (108,6), получим для искомой разности
Пусть жидкость движется через разрыв со стороны / на сторону 2. Тогда тот факт, что энергия диссипируется, означает, что должно быть q\ — q2 > 0, и мы приходим к выводу, что
«2 > hi, (108,7)
т. е. жидкость движется со стороны меньшей на сторону- большей высоты. Из (108,6) можно теперь заключить, что
»i>Ci = V£Ai> t)2<c2 = V^«2 (108,8)
в полной аналогии с газодинамическими ударными волнами. Неравенства (108,8) можно было бы найти и как необходимое условие устойчивости разрыва, подобно тому как это было сделано в § 88.
Задача
Найти условие устойчивости тангенциального разрыва на мелкой воде — линии, вдоль которой жидкость по обе стороны от нее движется с различными скоростями (С. В. Безбенков, О. П. Погуце, 1983).
Решение. Ввиду указанной в тексте аналогии между гидродинамикой мелкой воды и динамикой сжимаемого политропного газа, поставленная задача эквивалентна задаче об устойчивости тангенциального разрыва в сжимаемом газе (задача 1 к § 84). Отличие состоит, однако, в том, что в случае мелкой воды должны рассматриваться возмущения, зависящие лишь от координат в плоскости жидкого слоя (вдоль скорости v и перпендикулярно к ней), но не от координаты z вдоль глубины слоя '): приближению мелкой воды отвечают возмущения с длиной волны X > h. Поэтому найденная в задаче к § 84 скорость Vk оказывается теперь границей неустойчивости: разрыв устойчив при v > vk (v — скачок скорости на разрыве). Поскольку плотность и глубина жидкости по обе стороны разрыва одинаковы, то роль звуковой скорости по обе стороны от него играет одна и та же величина С] «= с2 = -yfgh, так что разрыв устойчив при
4)
В задаче
к § 84 ей соответствовала координата
у.