
- •§ 1. Уравнение непрерывности
- •§ Pvrff,
- •§ 2. Уравнение Эйлера
- •§ 3. Гидростатика
- •§ 4. Условие отсутствия конвекции
- •§ 5. Уравнение Бернулли
- •§ 6. Поток энергии
- •§ 7. Поток импульса
- •§ 8. Сохранение циркуляции скорости
- •§ 9. Потенциальное движение
- •§ 10. Несжимаемая жидкость
- •§ 12. Гравитационные волны
- •§ 13. Внутренние волны в несжимаемой жидкости
- •§ 14. Волны во вращающейся жидкости
- •Глава II
- •§ 15. Уравнения движения вязкой жидкости
- •§ 16. Диссипация энергии в несжимаемой жидкости
- •§17. Течение по трубе
- •§ 18. Движение жидкости между вращающимися цилиндрами
- •§ 19. Закон подобия
- •§ 20. Течение при малых числах Рейнольдса
- •§ 21. Ламинарный след
- •§ 22. Вязкость суспензий
- •§ 23. Точные решения уравнений движения вязкой жидкости
- •§ 24. Колебательное движение в вязкой жидкости
- •§ 25. Затухание гравитационных волн
- •Глава III
- •§ 26. Устойчивость стационарного движения жидкости
- •§ 27. Устойчивость вращательного движения жидкости
- •§ 29. Неустойчивость тангенциальных разрывов
- •§ 30. Квазипериодическое движение и синхронизация частот3)
- •§ 31. Странный аттрактор
- •§ 32. Переход к турбулентности путем удвоения периодов
- •§ 33. Развитая турбулентность
- •§ 34. Корреляционные функции скоростей
- •§ 35. Турбулентная область и явление отрыва
- •§ 36. Турбулентная струя
- •§ 37. Турбулентный след
- •§ 38. Теорема Жуковского
- •Глава IV
- •§ 39. Ламинарный пограничный слой
- •1. Определить толщину пограничного слоя вблизи критической точки (см. § 10) на обтекаемом жидкостью теле.
- •2. Определить движение в пограничном слое при конфузорном (см. § 23) течении между двумя пересекающимися плоскостями (к.. Pohlhausen, 1921).
- •§ 41. Устойчивость движения в ламинарном пограничном слое
- •2) Эта аналогия указана а в. Тимофеевым (1979) и а а Андроновым и а л. Фабрикантом (1979); ниже мы следуем изложению а. В. Тимофеева.
- •8) При V"(y) шг 0 уравнение (41,2) вообще не имеет решений, удовлетворяющих необходимым граничным условиям.
- •§ 42. Логарифмический профиль скоростей
- •§ 43. Турбулентное течение в трубах
- •§ 44. Турбулентный пограничный слой
- •§ 45. Кризис сопротивления
- •§ 46. Хорошо обтекаемые тела
- •§ 47. Индуктивное сопротивление
- •§ 48. Подъёмная сила тонкого крыла
- •S2(£)-Citt) 6-«
- •Глава V
- •§ 49. Общее уравнение переноса тепла
- •§ 50. Теплопроводность в несжимаемой жидкости
- •§ 51. Теплопроводность в неограниченной среде
- •§ 52. Теплопроводность в ограниченной среде
- •§ 53. Закон подобия для теплопередачи
- •§ 54. Теплопередача в пограничном слое
- •ВгТт « - у«р-
- •§ 55. Нагревание тела в движущейся жидкости
- •§ 56. Свободная конвекция
- •§ 57. Конвективная неустойчивость неподвижной жидкости
- •§ 58. Уравнения гидродинамики для жидкой смеси
- •§ 59. Коэффициенты диффузии и термодиффузии
- •§ 60. Диффузия взвешенных в жидкости частиц
- •Глава VII
- •§ 61. Формула Лапласа
- •§ 62. Капиллярные волны
- •§ 63. Влияние адсорбированных пленок на движение жидкости
- •Глава VIII
- •§ 64. Звуковые волны
- •§ 66. Энергия и импульс звуковых волн
- •§ 66. Отражение и преломление звуковых волн
- •§ 67. Геометрическая акустика
- •§ 68. Распространение звука в движущейся среде
- •§ 69. Собственные колебания
- •§ 70. Сферические волны
- •§71. Цилиндрические волны
- •§ 72. Общее решение волнового уравнения
- •Ctjc42-(X-q2- (*/-г,)2'
- •§ 73. Боковая волна
- •§ 74. Излучение звука
- •§ 75. Возбуждение звука турбулентностью
- •V 1г' 4я j дхидх1к
- •§ 76. Принцип взаимности
- •§ 77. Распространение звука по трубке
- •§ 78. Рассеяние звука
- •§ 79. Поглощение звука
- •4. Определить дополнительное поглощение звука, распространяющегося в смеси двух веществ, связанное с диффузией (и. Г. Шапошников и 3. А Гольдберг, 1952).
- •§ 80. Акустическое течение
- •§ 81. Вторая вязкость
- •Глава IX
- •§ 82. Распространение возмущений в потоке сжимаемого газа
- •2) Во избежание недоразумений оговорим, что если перед обтекаемым телом возникает ударная волна, то эта область несколько увеличивается (см. § 122).
- •§ 83. Стационарный поток сжимаемого газа
- •§ 84. Поверхности разрыва
- •§ 85. Ударная адиабата
- •2) Такой выбор системы координат будет подразумеваться везде в этой главе, за исключением § 92.
- •§ 86. Ударные волны слабой интенсивности
- •§ 87] Направление изменения величин в ударной волне 463
- •§ 87. Направление изменения величин в ударной волне
- •§ 88. Эволюционность ударных волн
- •§ 89. Ударные волны в политропном газе
- •1. Получить формулу
- •§ 90. Гофрировочная неустойчивость ударных волн
- •2) Сравните с аналогичной ситуацией для тангенциальных разрывов — задача 2 § 84.
- •1) Эта неустойчивость тоже была указана с. П. Дьяковым (1954); правильное значение нижней границы в (90,17) найдено в. М. Конторовичем (1957).
- •§ 91. Распространение ударной волны по трубе
- •§ 92. Косая ударная волна
- •§ 93. Ширина ударных волн
- •§ 94. Ударные волны в релаксирующей среде
- •§ 96. Слабые разрывы
- •Глава X
- •§ 97. Истечение газа через сопло
- •§ 98. Вязкое движение сжимаемого газа по трубе
- •§ 99. Одномерное автомодельное движение
- •5. Определить движение в изотермической автомодельной волне разрежения.
- •§ 100. Разрывы в начальных условиях
- •§ 101. Одномерные бегущие волны
- •§ 102. Образование разрывов в звуковой волне
- •§ 103. Характеристики
- •§ 104. Инварианты Римана
- •§ 105. Произвольное одномерное движение сжимаемого газа
- •§ 106. Задача о сильном взрыве
- •§ 107. Сходящаяся сферическая ударная волна
- •2) Эта задача была рассмотрена независимо Гудерлеем (о. Guderleu, 1942) и л. Д. Ландау и к. П. Станюковичем (1944, опубликовано в 1955).
- •§ 108. Теория «мелкой воды»
- •Глава XI
- •§ 109. Волна разрежения
- •§ 111. Пересечение ударных волн с твердой поверхностью
- •§ 112. Сверхзвуковое обтекание угла
- •§ 113. Обтекание конического острия
- •Глава XII
- •§ 114. Потенциальное движение сжимаемого газа
- •§ 115. Стационарные простые волны
- •§ 116. Уравнение Чаплыгина (общая задача
- •§ 117. Характеристики плоского стационарного течения
- •§ 118. Уравнение Эйлера — Трикоми. Переход через звуковую скорость
- •§1191 Решение уравнения эйлера —трикоми 619
- •§ 119. Решения уравнения Эйлера — Трикоми вблизи неособых точек звуковой поверхности
- •§ 120. Обтекание со звуковой скоростью
- •§ 121. Отражение слабого разрыва от звуковой линии
- •Глава XIII
- •§ 122. Образование ударных воли при сверхзвуковом обтекании тел
- •§ 123. Сверхзвуковое обтекание заостренного тела
- •§ 124. Дозвуковое обтекание тонкого крыла
- •§ 125. Сверхзвуковое обтекание крыла
- •§ 126. Околозвуковой закон подобия
- •§ 127. Гиперзвуковой закон подобия
- •Глава XIV
- •§ 128. Медленное горение
- •§ 129. Детонация
- •§ 130. Распространение детонационной волны
- •§ 131. Соотношение между различными режимами горения
- •§ 132. Конденсационные скачки
- •Глава XV
- •§ 133. Тензор энергии-импульса жидкости
- •§ 134. Релятивистские гидродинамические уравнения
- •§ 135. Ударные волны в релятивистской гидродинамике
- •§ 136. Релятивистские уравнения движения вязкой и теплопроводной среды
- •§ 137. Основные свойства сверхтекучей жидкости
- •§ 138. Термомеханический эффект
- •§ 139. Уравнения гидродинамики сверхтекучей жидкости
- •§ 140. Диссипативные процессы в сверхтекучей жидкости
- •§ 141. Распространение звука в сверхтекучей жидкости
§ 103. Характеристики
Данное в § 82 определение характеристик как линий, вдоль которых распространяются (в приближении геометрической акустики) малые возмущения, имеет общее значение, и не ограничено применением к плоскому стационарному сверхзвуковому течению, о котором шла речь в § 82.
Для одномерного нестационарного движения можно ввести характеристики как линии в плоскости х, t, угловой коэффициент которых dx/dt равен скорости распространения малых возмущений относительно неподвижной системы координат. Возмущения, распространяющиеся относительно газа со скоростью звука в положительном или отрицательном направлении оси х, перемещаются относительно неподвижной системы со скоростью v + с или v — с. Соответственно дифференциальные уравнения двух семейств характеристик, которые мы будем условно называть характеристиками С+ и С_, гласят:
(■£).— + «• (тг). —«• <103''>
Возмущения же, переносящиеся вместе с веществом газа, «распространяются» в плоскости х, t по характеристикам третьего семейства С0, для которых
(4г)п = *- <103'2>
Это — просто «линии тока» в плоскости к, t (ср. конец § 82)1). Подчеркнем, что для существования характеристик здесь отнюдь не требуется, чтобы движение газа было сверхзвуковым. Выражаемая характеристиками направленность распространения возмущений соответствует здесь просто причинной связи движения в последующие моменты времени с предыдущим движением.
В качестве примера рассмотрим характеристики простой волны. Для волны, распространяющейся в положительном направлении оси х, имеем согласно (101,5) х== t(v + с)+ f{v). Дифференцируя это соотношение, имеем:
dx = (v + с) dt + dv [t + tc' (v) + f (v) ].
С другой стороны, вдоль характеристики С+ имеем dx = {v + -\-c)dt; сравнивая оба равенства, найдем, что вдоль характеристики dv[t + tc'(v)-r- f'(u)] = 0. Выражение в квадратных скобках не может быть равно нулю тождественно. Поэтому должно быть dv — 0, т. е. v = const. Таким образом, мы приходим к выводу, что вдоль каждой из характеристик С+ остается постоянной скорость, а с нею и все остальные величины (в волне, распространяющейся влево, таким же свойством обладают характеристики С_). Мы увидим в следующем параграфе, что это обстоятельство не случайно, а органически связано с математической природой простых волн.
Из этого свойства характеристик С+ простой волны можно в свою очередь заключить, что они представляют 'собой семейство прямых линий в плоскости х, t; скорость имеет постоянные значения вдоль прямых х — t[v + c(v)\ + /(и) (101,5). В частности, в автомодельной волне разрежения (простая волна с f(v) = 0) эти прямые образуют пучок с общей точкой пересечения — началом координат плоскости х, t. Ввиду этого свойства автомодельную простую волну называют центрированной.
На рис. 86 изображено семейство характеристик С+ для простой волны разрежения, образующейся при ускоренном выдвигании поршня из трубы. Это есть семейство расходящихся прямых, начинающихся на кривой x = X(t), изображающей движение поршня. Справа от характеристики х = c0t простирается область покоящегося газа, в которой все характеристики параллельны друг другу.
') Точно такими же уравнениями (103,1—2) определяются характеристики и для нестационарного сферически симметричного движения, причем только надо заменить х на сферическую координату т (характеристики будут теперь линиями в плоскости г, t).
На рис. 87 дан аналогичный чертеж для простой волны сжатия, образующейся при ускоренном вдвигании поршня в трубу. В этом случае характеристики представляют собой сходящийся пучок прямых, которые в конце концов должны пересечься друг с другом. Поскольку каждая характеристика несет свое постоянное значение и, их пересечение друг с другом означает физически бессмысленную многозначность функции v(x, г). Это — геометрическая интерпретация результата о невозможности неограниченного существования простой волны сжатия и неизбежности
возникновения в ней ударной волны, к которому мы пришли уже аналогичным путем в § 101. Геометрическое же истолкование условий (101,12), определяющих время и место образования ударной волны, заключается в следующем. Пересекающееся семейство прямолинейных характеристик имеет огибающую, заканчивающуюся со стороны малых t угловой точкой, которая и определяет первый момент возникновения многозначности. Если уравнения характеристик заданы в параметрическом виде x = x(v), t = t(v), то положение угловой точки как раз и определяется уравнениями (101,12)').
Покажем теперь коротко, каким образом данное нами физическое определение характеристик как линий распространения возмущений соответствует известному из теории дифференциальных уравнений в частных производных чисто математическому аспекту этого понятия. Рассмотрим уравнение в частных произ-
') Вся область между двумя ветвями огибающей трижды покрыта характеристиками — в соответствии с трехзначностью величин, возникающей при опрокидывании профиля волны.
Особому случаю, когда ударная волна возникает на границе с областью покоя, соответствует вырождение одной из ветвей огибающей в отрезок характеристики х — Cot,
водных вида
^ + 2fiwfr + C^+D = 0, (103,3)
линейное по вторым производным (коэффициенты же А, В, С, D могут быть любыми функциями как от независимых переменных х, t, так и от неизвестной функции ф и ее первых производных)1). Уравнение (103,3) относится к эллиптическому типу, если везде В2 — ЛС<0, и к гиперболическому, если В2 — — АС > 0. В последнем случае уравнение
Adt2 — 2Bdxdt + Cdx2 = 0, (103,4)
или
dx В ± л/В* - АС , .
-dl= с ' <103'5)
определяет в плоскости х, t два семейства кривых — характеристик (для заданного решения ц>(х,у) уравнения (103,3)). Укажем, что если коэффициенты А, В, С в уравнении являются функциями только от х, t, то характеристики не зависят от конкретного решения уравнения.
Пусть данное течение описывается некоторым решением ф = Фо(*, 0 уравнения (103,3), и наложим на него малое возмущение фь Это возмущение предполагаем удовлетворяющим условиям, соответствующим геометрической акустике: оно слабо меняет движение (ф! мало вместе со своими первыми производными), но сильно меняется на протяжении малых расстояний (вторые производные от ф] относительно велики). Полагая в уравнении (103,3) ф = фо + Фь получим тогда для ф1 уравнение
причем в коэффициентах А, В, С положено ф = ф0. Следуя методу, принятому для перехода от волновой к геометрической оптике, пишем ф) в виде ц>\ = ае1^, где функция tfi (эйконал) — большая величина, и получаем для последней уравнение
*т* + ™Ш 3 +с(4ГУ-а <шз,б>
Уравнение распространения лучей в геометрической акустике получается приравниванием dx/dt групповой скорости:
dx dm
dt ~~ dk 1
где
*-й- —-3-
') Для одномерного нестационарного движения уравнению такого вида удовлетворяет потенциал скорости.
Дифференцируя соотношение
Ak2 — 2в£со + Ссо2 = О,
получим:
dx В® — Ak
dt ~ Ca — Bk '
а исключая отсюда с помощью того же соотношения k/a>, мы снова придем к уравнению (103,5).
Задача
Найти уравнение второго семейства характеристик в центрированной простой волне в политропном газе.
Решение. В центрированной простой волне, распространяющейся в сторону находящегося справа от нее неподвижного газа, имеем:
Vj- = o + с = с0 + 2—v.
Характеристики С+ изображаются пучком прямых х = const t. Характеристики же С- определяются уравнением
dx 3 — у х 4
—гг = о — с = ;—г- —. г~г со-
dt у+ I t у + 1
Интегрируя, находим:
где постоянная интегрирования выбрана так, чтобы характеристика С_ прохо- дила через точку х = Coto, t = to на характеристике С+ (х граничной между простой волной и областью покоя.
«Линии тока» в плоскости х, t даются уравнением
dx 2 / х \
-л-° = 7+i4t-c0'
откуда для характеристик Со:
2