
- •Часть 2
- •Глава I
- •§ 1. Элементарные возбуждения в квантовой ферми-жидкости
- •§ 2. Взаимодействие квазичастиц
- •1) В явной матричной форме: pFm'
- •§ 3. Магнитная восприимчивость ферми-жидкости
- •§ 3] Магнитная восприимчивость ферми-жидкости 25
- •§ 4. Нулевой звук
- •1) Колебания, соответствующие нулевому звуку в слабо неидеальном ферми-газе, были впервые рассмотрены ю. Л. Климентовичем и в. П. Силиным (1952).
- •§ 5. Спиновые волны в ферми-жидкости
- •§ 6. Вырожденный почти идеальный ферми-газ с отталкиванием между частицами
- •Глава II
- •§ 7. Функция Грина макроскопической системы
- •2) Мы будем называть оператор н', как и н, гамильтонианом.
- •§ 8. Определение энергетического спектра по функции Грина
- •2) Аналогичное разложение в квантовой теории поля называют формулой Челлена—Лемана (ср. IV §§ 101, 108).
- •§ 9. Функция Грина идеального ферми-газа
- •§ 10. Распределение частиц ферми-жидкости по импульсам
- •§11. Вычисление термодинамических величин по функции Грина '
- •§12] Т-операторы в представлении взаимодействия
- •§ 13. Диаграммная техника для ферми-систем
- •X) Чтобы не разбивать изложения, доказательство этой теоремы отложиы на конец параграфа.
- •3 Е. М. Лифшнц, л. П. Питаевскнй
- •§ 14. Собственно-энергетическая функция
- •§ 15. Двухчастичная функция Грина
- •§16. Связь вершинной функции с амплитудой рассеяния квазичастиц
- •§ 17. Вершинная функция при малых передачах импульса
- •§ 18. Связь вершинной функции с функцией взаимодействия квазичастиц
- •§ 18] Функция взаимодействия квазйчасгиц 91
- •§ 19. Тождества для производных от функции Грина
- •1) Оно аналогично калибровочному преобразованию в квантовой электродинамике (ср. III (111,8—9)).
- •2) Ср. Более подробные рассуждения ниже, в § 23.
- •4 Е. М. Лнфшиц, л. П. Пнтаевский
- •§ 20. Вывод связи между предельным импульсом и плотностью
- •§ 20] Связь между предельным импульсом и плотностью
- •2) Формула же (2,11) для эффективной массы может быть выведена с помощью соотношения (17,17) и тождеств (19,11) и (19,15).
- •§ 21. Гриновская функция почти идеального ферми-газа
- •Глава III
- •§ 22. Элементарные возбуждения в квантовой бозе-жидкости
- •§ 23. Сверхтекучесть
- •2) Подробное изложение гидродинамики сверхтекучей жидкости дается в другом томе этого Курса (том VI).
- •I. Найти предельный закон температурной зависимости коэффициента поверхностного натяжения а жидкого гелия вблизи абсолютного нуля (к. R. Atkins, 1953).
- •2. Найти закон дисперсии епр (р) для примесных частиц в движущейся
- •§ 24] Фонолы в жидкости 119
- •§ 24. Фононы в жидкости
- •§ 24] Фононы в жидкости 121
- •§ 25. Вырожденный почти идеальный бозе-газ
- •2NPaN2 mV
- •§ 26. Волновая функция конденсата
- •2) Добавление или удаление частицы надо представлять себе как совер- шаемое бесконечно медленно. Этим исключается возбуждение системы пере- менным полем.
- •5 Е. М. Лифшиц, л. П. Патаевсквй
- •§ 27. Температурная зависимость плотности конденсата
- •§ 28. Поведение сверхтекучей плотности вблизи л-точки
- •§ 29. Квантованные вихревые нити
- •2) Эго утверждение не относится, однако, к близкой окрестности х-точки; здесь толщина вихревой нити порядка величины корреляционного радиуса флуктуации.
- •1. Найти скорость движения и импульс кругового вихревого кольца.
- •2. Найти закон дисперсии малых колебаний прямолинейной вихревой нити (w. Thomson, 1880).
- •§ 30. Вихревая нить в почти идеальном бозе-газе
- •§ 31. Гриновские функции бозе-жидкости1)
- •§ 32. Диаграммная техника для бозе-жидкости
- •2) Точнее, входящей в вершину волнистой линии должен сопоставляться множитель s, а выходящей — множитель е*; ввиду вещественности е эти множители фактически одинаковы.
- •§ 32] Диаграммная техника для бозе-жидкости 155
- •2) Поскольку f—четная функция своего аргумента, то выбор общего знака р здесь несуществен.
- •§ 33. Собственно-энергетические функции
- •§ 34. Распад квазичастиц
- •2Л2(р —рс)3 ЗпрЛ4
- •§ 35. Свойства спектра вблизи точки его окончания
- •1) Содержание этого параграфа принадлежит л. П. Питаевскому (1959).
- •§ 36. Гриновские функции при конечных температурах1)
- •§ 36] Гриновские функции при конечных температурах 173
- •§ 37. Температурные функции Грина
- •§ 38. Диаграммная техника для температурных функций Грина
- •Глава V
- •§ 39. Сверхтекучий ферми-газ. Энергетический спектр
- •§ 391 Сверхтекучий ферми-газ. Энергетический спектр
- •§ 40. Сверхтекучий ферми-газ. Термодинамические свойства
- •1) При больших и первый член разложения / (и) по 1/и:
- •2) Для разложения интеграла / (и) при и —»• 0 прибавляем и вычитаем из него интеграл
- •§ 41. Гриновские функции сверхтекучего ферми-газа
- •§ 42. Температурные гриновские функции сверхтекучего ферми-газа
- •1) Эту формулу можно получить, написав 1 1 г 1 , 1
- •§ 43. Сверхпроводимость металлов
- •§ 44. Сверхпроводящий ток
- •2) Феноменологическая электродинамика сверхпроводников изложена в другом томе этого курса—см. VIII глава VI.
- •2) Изложенный вывод уравнения (44,8) принадлежит л. Д. Ландау (1941).
- •§ 45. Уравнения Гинзбурга — Ландау
- •2) Этот выбор (в том числе отождествление m с истинной массой электрона) не имеет, конечно, глубокого смысла и условен в той же мере, как и определение ns в (44,2).
- •§ 46. Поверхностное натяжение на границе сверхпроводящей и нормальной фаз
- •8 Е. М. Лифшнц, л. П. Патаюаквй
- •§ 47. Два рода сверхпроводников
- •2) Не путать его с промежуточным состоянием сверхпроводников первого рода, возникающим при определенных конфигурациях образца и внешнего магнитного поля!
- •§ 47] Два рода сверхпроводников 229
- •§ 48. Структура смешанного состояния
- •1) В этом параграфе буква г будет обозначать цилиндрическую координату—расстояние от оси.
- •J) Второй член в (48,13), будучи выражен через ток j, принимает вид
- •2) Наиболее выгодна, по-видимому, решетка, образованная равносторонними треугольниками с вихревыми нитями в их вершинах.
- •§ 49. Диамагнитная восприимчивость выше точки перехода
- •§ 49] Диамагнитная восприимчивость выше точки перехода 241
- •§ 50. Эффект Джозефсона
- •§ 51. Связь тока с магнитным полем в сверхпроводнике
- •§ 52. Глубина проникновения магнитного поля в сверхпроводник
- •§ 53. Сверхпроводящие сплавы
- •§ 54. Эффект Купера при отличных от нуля орбитальных моментах пары
- •2) Переход происходит при температуре —ю-3 к. Заметим, что малость Тс обеспечивает существование области применимости теории нормальной ферми-жидкости к жидкому Не3.
- •Глава VI
- •§ 55. Электрон в периодическом поле
- •2. Найти закон дисперсии для одномерного движения частицы в слабом периодическом поле 0 (х).
- •§ 56. Влияние внешнего поля на движение электрона в решетке
- •§ 56J влияние внешнего поля на движение электрона
- •§ 57. Квазиклассические траектории
- •§ 58. Квазиклассические уровни энергии
- •§ 58] Квазиклассические уровни энергии 285
- •1) При движении в однородном магнитном поле адиабатическим инвариантом, не зависящим от выбора векторного потенциала, является интеграл
- •2) Для свободных электронов (см. Примечание на стр. 282) условие (58,7)
- •§ 59. Тензор эффективных масс электрона в решетке
- •§ 60. Симметрия состояний электрона в решетке в магнитном поле
- •§ 61. Электронный спектр нормальных металлов
- •§ 62. Гриновская функция электронов в металле
- •§ 62] Гриновская функция электронов в металле 305
- •§ 63. Эффект де Гааза — ван Альфена
- •2) Ср. V § 60, где этот эффект рассматривался для идеального электронного газа.
- •2) Ср. VIII § 18, где аналогичное условие выведено для электрического случая.
- •§ 64. Электрон-фононное взаимодействие
- •§ 65. Влияние электрон-фононного взаимодействия на электронный спектр в металле
- •2) Излагаемые в этом параграфе результаты принадлежат а. Б. Мигдалу (1958).
- •11 В. М. Лифшнц, л. П. Питаевский
- •§ 66. Электронный спектр твердых диэлектриков
- •§ 67. Электроны и дырки в полупроводниках
- •§ 68. Электронный спектр вблизи точки вырождения
- •1). Такая ситуация имеет место для дна дырочной зоны в алмазе, кремнии и германии, которые все имеют решетку одинакового типа.
- •1) Примером является одна из модификаций олова—серое олово.
- •Глава VII
- •§ 69. Уравнение движения магнитного момента в ферромагнетике
- •1) Экспериментальные данные о гиромагнитных отношениях g, дающие для ферромагнетиков значения, очень близкие к 2, свидетельствуют о спиновой природе ферромагнетизма.
- •§ 70. Магноны в ферромагнетике. Спектр
- •§ 71. Магноны в ферромагнетике. Термодинамические величины
- •§ 72. Спиновый гамильтониан
- •§ 72] Спиновый гамильтониан 357
- •2. Пренебрегая взаимодействием между спинами, вычислить намагниченность парамагнетика при произвольном соотношении между р§ и т.
- •§ 73. Взаимодействие магнонов
- •§ 74. Магноны в антиферромагнетике
- •Глава VIII
- •§ 75. Гриновская функция фотона в среде
- •§ 76. Флуктуации электромагнитного поля
- •§ 77. Электромагнитные флуктуации в неограниченной среде
- •2. То же для тела с магнитной поляризуемостью a,-j (to) *).
- •3. Определить флуктуации электромагнитного поля в условиях задачи 1 считая, однако, что температура среды много ниже температуры тела.
- •2 27 Eha/t_l г2 eftco/r_,
- •§ 78. Флуктуации тока в линейных цепях
- •§ 80. Тензор напряжений ван-дер-ваальсовых сил
- •§ 81. Молекулярные силы взаимодействия между твердыми телами. Общая формула
- •§ 82. Молекулярные силы взаимодействия между твердыми телами. Предельные случаи
- •§ 83. Асимптотическое поведение корреляционной функции в жидкости
- •§ 84. Операторное выражение для диэлектрической проницаемости
- •§ 85. Вырожденная плазма
- •§ 85] Вырожденная пллзма 417
- •2 YnVTe3
- •Глава IX
- •§ 86. Динамический формфактор жидкости
- •§ 87. Правила сумм для формфактора
- •§ 87] Правило сумм для формфактора 431
- •§ 88. Гидродинамические флуктуации
- •§ 89. Гидродинамические флуктуации в неограниченной среде
- •1. Найти корреляционную функцию флуктуации числа растворенных час- тиц в слабом растворе.
- •2. Найти корреляционную функцию флуктуации давления в жидкости, обладающей большой диспергирующей второй вязкостью £ (со) (связанной с медленной релаксацией некоторого параметра).
- •§ 90. Операторные выражения для кинетических коэффициентов
- •§91. Динамический формфактор ферми-жидкости
- •198, 207, 208, 213, 263 Восприимчивость парамагнетика 358, 359
- •216, 245, 276, 370 Квазиимпульс 267
- •118, 196, 208 Сила взаимного трения 142 Скелетная диаграмма 74, 84 Случайные потоки 434
- •384, 425, 435 Форм-фактор динамический 422
- •1) Этот указатель дополняет оглавле] включены термины и понятия, непосредствен
- •399, В формуле (81,6) в последнем выражении должно быть
2)
В задаче в III § 99 показано, что неприводимое
представление £><3/2)
полной группы вращений остается
неприводимым и по отношению к группе
О,
совпадая
с ее представлением D'.1). Такая ситуация имеет место для дна дырочной зоны в алмазе, кремнии и германии, которые все имеют решетку одинакового типа.
легко вычисляются теперь по хорошо известным матричным элементам момента (они даются формулами III (29,7—10)). Такое вычисление приводит к следующим выражениям:
Угг = Vit = (р\ + 362) (kl + kl) + (р\ + 962) k%, У г, = Vn = (р\ + 7Р2) (к* + Щ) + ф, +р2) kl,
V12 = -V3i = lQ-№Aky + ikx), (68,4)
^хз = V2i = 2^3р2 (fej-ft*) +^,ikxky, Vli = V23 = 0.
Составление секулярного уравнения можно упростить, заметив, что расщепление уровня заведомо не может быть полным — должно оставаться двукратное (крамерсовское) вырождение. Это значит, что каждый корень Х^е(к)—е(0) секулярного уравнения (собственное значение матрицы V) будет двойным. Другими словами, каждому собственному значению X будет соответствовать два линейно независимых набора величин ср„ (п = = 1, 2, 3, 4) — решений уравнений
2У„яфв = Лфв. (68,5)
п
Комбинируя эти два набора, мы можем, следовательно, наложить на величины ср„ одно дополнительное условие, в частности—обратить в нуль одну из них; пусть ср4 = 0. Тогда уравнение (68,5) с п = 4 даст
^41Ф1+^42ф2+^4зФз=0.
Подставив отсюда значение ср3 в уравнения с п = 1, 2, получим систему всего двух однородных уравнений с двумя неизвестными фх и ф2:
Vti—VtlVM/ViS V22—Vi2V2SlVi3J \<f2J V<P2
(уравнение же с n = 3 не дает ничего нового). Таким образом, задача о собственных значениях 4х4-матрицы сводится к задаче для 2х2-матрицы. Составив для нее секулярное уравнение и решив его (со значениями Vnm из (68,4)), получим
или окончательно
е*. 2 (k) —е (0) = Л/г2 ± [Вк* + С (k\k\ + k\k\ + k\k\)\-l\ (68,6)
где
А =р1 + 5р1, В = 16Р1, С = з(|р1-16р^
(G. Dresselhaus, A. F. Kip, Ch. Kittel, 1955). Уровень расщепляется при выходе из точки к = 0 во всех направлениях >).
Остановимся кратко на вопросе о виде уравнений, описывающих поведение частиц вблизи вырожденного дна зоны в магнитном поле. Для определенности будем иметь в виду второй из рассмотренных в этом параграфе случаев—спектр (68,6).
Прямое использование гамильтониана, составленного из (68,6) по общему правилу (56,7), натолкнулось бы на затруднения, связанные с неаналитическим характером спектра вблизи точки к = 0. Эти трудности можно обойти, если произвести замену к—>-к = К—eA/fic не в (68,6), а в матричном гамильтониане (68,3) (для сохранения эрмитовости при этом должна быть произведена симметризация по компонентам к). Каждый матричный элемент гамильтониана превращается после этого в линейный дифференциальный оператор, действующий не только на спиновые индексы, но и на аргументы функций ср„(К) в уравнениях (68,5), которые превращаются, таким образом, в систему четырех линейных дифференциальных уравнений.
Для учета спиновых эффектов при наличии магнитного поля к гамильтониану (68,3) надо еще добавить члены, непосредственно зависящие от Н, которые не определяются соображениями калибровочной инвариантности. Поскольку поле считается слабым, добавляемые члены должны быть линейны' по Н; в то же время в виду предполагаемой малости к они не должны зависеть от к (ср. § 59). В данном случае общий вид таких членов, инвариантных относительно всех преобразований симметрии кристалла, таков:
64Нj +'б5 (ЯJ» + НуЦ + ВД). (68,7)
*)
Напомним, что применение теории
возмущений к состояниям одного только
вырожденного уровня предполагает
малость интервалов е (к) — е (0)
возникающего
расщепления по сравнению с расстояниями
до соседних зон, в том числе тех, которые
отщепились из-за спин-орбитального
взаимодействия!