
- •Часть 2
- •Глава I
- •§ 1. Элементарные возбуждения в квантовой ферми-жидкости
- •§ 2. Взаимодействие квазичастиц
- •1) В явной матричной форме: pFm'
- •§ 3. Магнитная восприимчивость ферми-жидкости
- •§ 3] Магнитная восприимчивость ферми-жидкости 25
- •§ 4. Нулевой звук
- •1) Колебания, соответствующие нулевому звуку в слабо неидеальном ферми-газе, были впервые рассмотрены ю. Л. Климентовичем и в. П. Силиным (1952).
- •§ 5. Спиновые волны в ферми-жидкости
- •§ 6. Вырожденный почти идеальный ферми-газ с отталкиванием между частицами
- •Глава II
- •§ 7. Функция Грина макроскопической системы
- •2) Мы будем называть оператор н', как и н, гамильтонианом.
- •§ 8. Определение энергетического спектра по функции Грина
- •2) Аналогичное разложение в квантовой теории поля называют формулой Челлена—Лемана (ср. IV §§ 101, 108).
- •§ 9. Функция Грина идеального ферми-газа
- •§ 10. Распределение частиц ферми-жидкости по импульсам
- •§11. Вычисление термодинамических величин по функции Грина '
- •§12] Т-операторы в представлении взаимодействия
- •§ 13. Диаграммная техника для ферми-систем
- •X) Чтобы не разбивать изложения, доказательство этой теоремы отложиы на конец параграфа.
- •3 Е. М. Лифшнц, л. П. Питаевскнй
- •§ 14. Собственно-энергетическая функция
- •§ 15. Двухчастичная функция Грина
- •§16. Связь вершинной функции с амплитудой рассеяния квазичастиц
- •§ 17. Вершинная функция при малых передачах импульса
- •§ 18. Связь вершинной функции с функцией взаимодействия квазичастиц
- •§ 18] Функция взаимодействия квазйчасгиц 91
- •§ 19. Тождества для производных от функции Грина
- •1) Оно аналогично калибровочному преобразованию в квантовой электродинамике (ср. III (111,8—9)).
- •2) Ср. Более подробные рассуждения ниже, в § 23.
- •4 Е. М. Лнфшиц, л. П. Пнтаевский
- •§ 20. Вывод связи между предельным импульсом и плотностью
- •§ 20] Связь между предельным импульсом и плотностью
- •2) Формула же (2,11) для эффективной массы может быть выведена с помощью соотношения (17,17) и тождеств (19,11) и (19,15).
- •§ 21. Гриновская функция почти идеального ферми-газа
- •Глава III
- •§ 22. Элементарные возбуждения в квантовой бозе-жидкости
- •§ 23. Сверхтекучесть
- •2) Подробное изложение гидродинамики сверхтекучей жидкости дается в другом томе этого Курса (том VI).
- •I. Найти предельный закон температурной зависимости коэффициента поверхностного натяжения а жидкого гелия вблизи абсолютного нуля (к. R. Atkins, 1953).
- •2. Найти закон дисперсии епр (р) для примесных частиц в движущейся
- •§ 24] Фонолы в жидкости 119
- •§ 24. Фононы в жидкости
- •§ 24] Фононы в жидкости 121
- •§ 25. Вырожденный почти идеальный бозе-газ
- •2NPaN2 mV
- •§ 26. Волновая функция конденсата
- •2) Добавление или удаление частицы надо представлять себе как совер- шаемое бесконечно медленно. Этим исключается возбуждение системы пере- менным полем.
- •5 Е. М. Лифшиц, л. П. Патаевсквй
- •§ 27. Температурная зависимость плотности конденсата
- •§ 28. Поведение сверхтекучей плотности вблизи л-точки
- •§ 29. Квантованные вихревые нити
- •2) Эго утверждение не относится, однако, к близкой окрестности х-точки; здесь толщина вихревой нити порядка величины корреляционного радиуса флуктуации.
- •1. Найти скорость движения и импульс кругового вихревого кольца.
- •2. Найти закон дисперсии малых колебаний прямолинейной вихревой нити (w. Thomson, 1880).
- •§ 30. Вихревая нить в почти идеальном бозе-газе
- •§ 31. Гриновские функции бозе-жидкости1)
- •§ 32. Диаграммная техника для бозе-жидкости
- •2) Точнее, входящей в вершину волнистой линии должен сопоставляться множитель s, а выходящей — множитель е*; ввиду вещественности е эти множители фактически одинаковы.
- •§ 32] Диаграммная техника для бозе-жидкости 155
- •2) Поскольку f—четная функция своего аргумента, то выбор общего знака р здесь несуществен.
- •§ 33. Собственно-энергетические функции
- •§ 34. Распад квазичастиц
- •2Л2(р —рс)3 ЗпрЛ4
- •§ 35. Свойства спектра вблизи точки его окончания
- •1) Содержание этого параграфа принадлежит л. П. Питаевскому (1959).
- •§ 36. Гриновские функции при конечных температурах1)
- •§ 36] Гриновские функции при конечных температурах 173
- •§ 37. Температурные функции Грина
- •§ 38. Диаграммная техника для температурных функций Грина
- •Глава V
- •§ 39. Сверхтекучий ферми-газ. Энергетический спектр
- •§ 391 Сверхтекучий ферми-газ. Энергетический спектр
- •§ 40. Сверхтекучий ферми-газ. Термодинамические свойства
- •1) При больших и первый член разложения / (и) по 1/и:
- •2) Для разложения интеграла / (и) при и —»• 0 прибавляем и вычитаем из него интеграл
- •§ 41. Гриновские функции сверхтекучего ферми-газа
- •§ 42. Температурные гриновские функции сверхтекучего ферми-газа
- •1) Эту формулу можно получить, написав 1 1 г 1 , 1
- •§ 43. Сверхпроводимость металлов
- •§ 44. Сверхпроводящий ток
- •2) Феноменологическая электродинамика сверхпроводников изложена в другом томе этого курса—см. VIII глава VI.
- •2) Изложенный вывод уравнения (44,8) принадлежит л. Д. Ландау (1941).
- •§ 45. Уравнения Гинзбурга — Ландау
- •2) Этот выбор (в том числе отождествление m с истинной массой электрона) не имеет, конечно, глубокого смысла и условен в той же мере, как и определение ns в (44,2).
- •§ 46. Поверхностное натяжение на границе сверхпроводящей и нормальной фаз
- •8 Е. М. Лифшнц, л. П. Патаюаквй
- •§ 47. Два рода сверхпроводников
- •2) Не путать его с промежуточным состоянием сверхпроводников первого рода, возникающим при определенных конфигурациях образца и внешнего магнитного поля!
- •§ 47] Два рода сверхпроводников 229
- •§ 48. Структура смешанного состояния
- •1) В этом параграфе буква г будет обозначать цилиндрическую координату—расстояние от оси.
- •J) Второй член в (48,13), будучи выражен через ток j, принимает вид
- •2) Наиболее выгодна, по-видимому, решетка, образованная равносторонними треугольниками с вихревыми нитями в их вершинах.
- •§ 49. Диамагнитная восприимчивость выше точки перехода
- •§ 49] Диамагнитная восприимчивость выше точки перехода 241
- •§ 50. Эффект Джозефсона
- •§ 51. Связь тока с магнитным полем в сверхпроводнике
- •§ 52. Глубина проникновения магнитного поля в сверхпроводник
- •§ 53. Сверхпроводящие сплавы
- •§ 54. Эффект Купера при отличных от нуля орбитальных моментах пары
- •2) Переход происходит при температуре —ю-3 к. Заметим, что малость Тс обеспечивает существование области применимости теории нормальной ферми-жидкости к жидкому Не3.
- •Глава VI
- •§ 55. Электрон в периодическом поле
- •2. Найти закон дисперсии для одномерного движения частицы в слабом периодическом поле 0 (х).
- •§ 56. Влияние внешнего поля на движение электрона в решетке
- •§ 56J влияние внешнего поля на движение электрона
- •§ 57. Квазиклассические траектории
- •§ 58. Квазиклассические уровни энергии
- •§ 58] Квазиклассические уровни энергии 285
- •1) При движении в однородном магнитном поле адиабатическим инвариантом, не зависящим от выбора векторного потенциала, является интеграл
- •2) Для свободных электронов (см. Примечание на стр. 282) условие (58,7)
- •§ 59. Тензор эффективных масс электрона в решетке
- •§ 60. Симметрия состояний электрона в решетке в магнитном поле
- •§ 61. Электронный спектр нормальных металлов
- •§ 62. Гриновская функция электронов в металле
- •§ 62] Гриновская функция электронов в металле 305
- •§ 63. Эффект де Гааза — ван Альфена
- •2) Ср. V § 60, где этот эффект рассматривался для идеального электронного газа.
- •2) Ср. VIII § 18, где аналогичное условие выведено для электрического случая.
- •§ 64. Электрон-фононное взаимодействие
- •§ 65. Влияние электрон-фононного взаимодействия на электронный спектр в металле
- •2) Излагаемые в этом параграфе результаты принадлежат а. Б. Мигдалу (1958).
- •11 В. М. Лифшнц, л. П. Питаевский
- •§ 66. Электронный спектр твердых диэлектриков
- •§ 67. Электроны и дырки в полупроводниках
- •§ 68. Электронный спектр вблизи точки вырождения
- •1). Такая ситуация имеет место для дна дырочной зоны в алмазе, кремнии и германии, которые все имеют решетку одинакового типа.
- •1) Примером является одна из модификаций олова—серое олово.
- •Глава VII
- •§ 69. Уравнение движения магнитного момента в ферромагнетике
- •1) Экспериментальные данные о гиромагнитных отношениях g, дающие для ферромагнетиков значения, очень близкие к 2, свидетельствуют о спиновой природе ферромагнетизма.
- •§ 70. Магноны в ферромагнетике. Спектр
- •§ 71. Магноны в ферромагнетике. Термодинамические величины
- •§ 72. Спиновый гамильтониан
- •§ 72] Спиновый гамильтониан 357
- •2. Пренебрегая взаимодействием между спинами, вычислить намагниченность парамагнетика при произвольном соотношении между р§ и т.
- •§ 73. Взаимодействие магнонов
- •§ 74. Магноны в антиферромагнетике
- •Глава VIII
- •§ 75. Гриновская функция фотона в среде
- •§ 76. Флуктуации электромагнитного поля
- •§ 77. Электромагнитные флуктуации в неограниченной среде
- •2. То же для тела с магнитной поляризуемостью a,-j (to) *).
- •3. Определить флуктуации электромагнитного поля в условиях задачи 1 считая, однако, что температура среды много ниже температуры тела.
- •2 27 Eha/t_l г2 eftco/r_,
- •§ 78. Флуктуации тока в линейных цепях
- •§ 80. Тензор напряжений ван-дер-ваальсовых сил
- •§ 81. Молекулярные силы взаимодействия между твердыми телами. Общая формула
- •§ 82. Молекулярные силы взаимодействия между твердыми телами. Предельные случаи
- •§ 83. Асимптотическое поведение корреляционной функции в жидкости
- •§ 84. Операторное выражение для диэлектрической проницаемости
- •§ 85. Вырожденная плазма
- •§ 85] Вырожденная пллзма 417
- •2 YnVTe3
- •Глава IX
- •§ 86. Динамический формфактор жидкости
- •§ 87. Правила сумм для формфактора
- •§ 87] Правило сумм для формфактора 431
- •§ 88. Гидродинамические флуктуации
- •§ 89. Гидродинамические флуктуации в неограниченной среде
- •1. Найти корреляционную функцию флуктуации числа растворенных час- тиц в слабом растворе.
- •2. Найти корреляционную функцию флуктуации давления в жидкости, обладающей большой диспергирующей второй вязкостью £ (со) (связанной с медленной релаксацией некоторого параметра).
- •§ 90. Операторные выражения для кинетических коэффициентов
- •§91. Динамический формфактор ферми-жидкости
- •198, 207, 208, 213, 263 Восприимчивость парамагнетика 358, 359
- •216, 245, 276, 370 Квазиимпульс 267
- •118, 196, 208 Сила взаимного трения 142 Скелетная диаграмма 74, 84 Случайные потоки 434
- •384, 425, 435 Форм-фактор динамический 422
- •1) Этот указатель дополняет оглавле] включены термины и понятия, непосредствен
- •399, В формуле (81,6) в последнем выражении должно быть
§ 58. Квазиклассические уровни энергии
Мы видели, что классическому движению электрона в решетке в магнитном поле по замкнутой траектории в к-простран-стве отвечает в обычном пространстве движение, финитное в плоскости, перпендикулярной направлению поля Н. При переходе к квантовой механике это приводит к возникновению дискретных уровней энергии при каждом фиксированном значении продольного квазиимпульса k2. Эти уровни определяются общими правилами квазиклассического квантования.
Выберем векторный потенциал однородного магнитного поля (направленного вдоль оси z) в виде Ах = — Ну, Ау = Аг — 0. Тогда компоненты обобщенного квазиимпульса
Kx = kx + ^-Hy, Ky = ky, Kz = kz. (58,1)
Координата х является циклической переменной, и поэтому х-компонента обобщенного квазиимпульса сохраняется:
Kx = kx + -^- Ну = const. (58,2)
сТь
Согласно правилу квантования Бора — § 48), пишем условие
■п,
■k\§Kydy
Зоммерфельда (см. III (58,3)
§ 58] Квазиклассические уровни энергии 285
где интегрирование распространено по периоду движения, an — целое положительное число, предполагаемое большим1). Подставив сюда, согласно (58,1—2), Ky = ky яйу =— (с%1\е \Н)dkx, получим
где теперь интеграл берется по замкнутой траектории в к-про-странстве. Этот интеграл — не что иное, как охватываемая траекторией площадь, т. е. введенная в предыдущем параграфе площадь 5(е, k2) сечения изоэнергетической поверхности плоскостью kz — const.
Таким образом, окончательно находим
5(е, k2) = 2n^-n . (58,5)
civ
(Я. М. Лифшиц, 1951; L. Onsager, 1952). Этим условием и определяются в неявном виде уровни энергии %{k2). Таким образом, энергетическая зона (номер s которой мы для краткости не выписываем) распадается на дискретный ряд подзон Ландау, каждая из которых представляет собой полосу уровней энергии, отличающихся значением непрерывной переменной k2.
Как известно, квазиклассическое условие квантования может быть уточнено введением поправки, сводящейся к прибавлению к большому квантовому числу п числа порядка единицы. Определение этой поправки требует рассмотрения движения вблизи «точек остановки», ограничивающих область интегрирования в (58,3).
Зависимость Ky — ky от у на траектории электрона определяется уравнением
е
(k)
=
е (кх—^Я
у,
ky,
k2^j
=
const (58,6)
при заданном значении kz и при Кх = const; точка остановки у = уи определяется условием обращения в нуль скорости Vy — ds/hdky. Вблизи этой точки разложение уравнения (58,6) - по степеням у—у0 дает
■^(ft
Ktdr, где
К*—проекция
обобщенного квазиимпульса на плоскость,
перпендикулярную полю (ср. II
§ 21). При сделанном выборе А
интеграл
Kxdx
= Кх
(j)
dx—Q, так
что адиабатический инвариант совпадает
с интегралом в
(58,3).1) При движении в однородном магнитном поле адиабатическим инвариантом, не зависящим от выбора векторного потенциала, является интеграл
где £yo — ky{y0). Отсюда видно, что приближение к точке остановки происходит по корневому закону
by—kve = ±AVy—y0
(для определенности считаем, что классически недоступная область лежит при у<у0). Но это—тот самый закон, к которому относится обычный вывод поправки в квазиклассическом квантовании (см. III §§ 47, 48). Уточненное правило (58,5) имеет, следовательно, вид
S(e,kt)=2n^f(n + ±y (58,7)
Как это ясно из вывода (основанного на разложении функции (58,6)), для справедливости "уточненного правила квантования необходимо, чтобы траектория проходила в достаточном удалении от особых точек функции е(к) (в том числе от комплексных точек ветвления). Необходимо также, чтобы нигде вблизи траектории не нарушалось условие квазиклассичности (в частности — не обращалась в нуль х, у-проекция скорости дг/дк)1). Наконец, надо иметь в виду приближенность самого гамильтониана (56,7), на котором основаны все выводы. Если решетка обладает центром инверсии, то поправки к гамильтониану квадратичны по напряженности поля и не отражаются на условии (58,7). Но если центр инверсии отсутствует, то поправки к гамильтониану линейны по Н; в этом случае поправочный член 1/2 в (58,7) теряет смысл, так как погрешность того же порядка дает и приближенность гамильтониана2).
Интервал Ае между двумя последовательными уровнями отвечает изменению большого числа п на единицу. Он определяется, следовательно, равенством
A5 = f-A8=?4^. (58,8)
д& he v
Введя классическую частоту периодического движения соя, согласно (57,7), получим