
- •Часть 2
- •Глава I
- •§ 1. Элементарные возбуждения в квантовой ферми-жидкости
- •§ 2. Взаимодействие квазичастиц
- •1) В явной матричной форме: pFm'
- •§ 3. Магнитная восприимчивость ферми-жидкости
- •§ 3] Магнитная восприимчивость ферми-жидкости 25
- •§ 4. Нулевой звук
- •1) Колебания, соответствующие нулевому звуку в слабо неидеальном ферми-газе, были впервые рассмотрены ю. Л. Климентовичем и в. П. Силиным (1952).
- •§ 5. Спиновые волны в ферми-жидкости
- •§ 6. Вырожденный почти идеальный ферми-газ с отталкиванием между частицами
- •Глава II
- •§ 7. Функция Грина макроскопической системы
- •2) Мы будем называть оператор н', как и н, гамильтонианом.
- •§ 8. Определение энергетического спектра по функции Грина
- •2) Аналогичное разложение в квантовой теории поля называют формулой Челлена—Лемана (ср. IV §§ 101, 108).
- •§ 9. Функция Грина идеального ферми-газа
- •§ 10. Распределение частиц ферми-жидкости по импульсам
- •§11. Вычисление термодинамических величин по функции Грина '
- •§12] Т-операторы в представлении взаимодействия
- •§ 13. Диаграммная техника для ферми-систем
- •X) Чтобы не разбивать изложения, доказательство этой теоремы отложиы на конец параграфа.
- •3 Е. М. Лифшнц, л. П. Питаевскнй
- •§ 14. Собственно-энергетическая функция
- •§ 15. Двухчастичная функция Грина
- •§16. Связь вершинной функции с амплитудой рассеяния квазичастиц
- •§ 17. Вершинная функция при малых передачах импульса
- •§ 18. Связь вершинной функции с функцией взаимодействия квазичастиц
- •§ 18] Функция взаимодействия квазйчасгиц 91
- •§ 19. Тождества для производных от функции Грина
- •1) Оно аналогично калибровочному преобразованию в квантовой электродинамике (ср. III (111,8—9)).
- •2) Ср. Более подробные рассуждения ниже, в § 23.
- •4 Е. М. Лнфшиц, л. П. Пнтаевский
- •§ 20. Вывод связи между предельным импульсом и плотностью
- •§ 20] Связь между предельным импульсом и плотностью
- •2) Формула же (2,11) для эффективной массы может быть выведена с помощью соотношения (17,17) и тождеств (19,11) и (19,15).
- •§ 21. Гриновская функция почти идеального ферми-газа
- •Глава III
- •§ 22. Элементарные возбуждения в квантовой бозе-жидкости
- •§ 23. Сверхтекучесть
- •2) Подробное изложение гидродинамики сверхтекучей жидкости дается в другом томе этого Курса (том VI).
- •I. Найти предельный закон температурной зависимости коэффициента поверхностного натяжения а жидкого гелия вблизи абсолютного нуля (к. R. Atkins, 1953).
- •2. Найти закон дисперсии епр (р) для примесных частиц в движущейся
- •§ 24] Фонолы в жидкости 119
- •§ 24. Фононы в жидкости
- •§ 24] Фононы в жидкости 121
- •§ 25. Вырожденный почти идеальный бозе-газ
- •2NPaN2 mV
- •§ 26. Волновая функция конденсата
- •2) Добавление или удаление частицы надо представлять себе как совер- шаемое бесконечно медленно. Этим исключается возбуждение системы пере- менным полем.
- •5 Е. М. Лифшиц, л. П. Патаевсквй
- •§ 27. Температурная зависимость плотности конденсата
- •§ 28. Поведение сверхтекучей плотности вблизи л-точки
- •§ 29. Квантованные вихревые нити
- •2) Эго утверждение не относится, однако, к близкой окрестности х-точки; здесь толщина вихревой нити порядка величины корреляционного радиуса флуктуации.
- •1. Найти скорость движения и импульс кругового вихревого кольца.
- •2. Найти закон дисперсии малых колебаний прямолинейной вихревой нити (w. Thomson, 1880).
- •§ 30. Вихревая нить в почти идеальном бозе-газе
- •§ 31. Гриновские функции бозе-жидкости1)
- •§ 32. Диаграммная техника для бозе-жидкости
- •2) Точнее, входящей в вершину волнистой линии должен сопоставляться множитель s, а выходящей — множитель е*; ввиду вещественности е эти множители фактически одинаковы.
- •§ 32] Диаграммная техника для бозе-жидкости 155
- •2) Поскольку f—четная функция своего аргумента, то выбор общего знака р здесь несуществен.
- •§ 33. Собственно-энергетические функции
- •§ 34. Распад квазичастиц
- •2Л2(р —рс)3 ЗпрЛ4
- •§ 35. Свойства спектра вблизи точки его окончания
- •1) Содержание этого параграфа принадлежит л. П. Питаевскому (1959).
- •§ 36. Гриновские функции при конечных температурах1)
- •§ 36] Гриновские функции при конечных температурах 173
- •§ 37. Температурные функции Грина
- •§ 38. Диаграммная техника для температурных функций Грина
- •Глава V
- •§ 39. Сверхтекучий ферми-газ. Энергетический спектр
- •§ 391 Сверхтекучий ферми-газ. Энергетический спектр
- •§ 40. Сверхтекучий ферми-газ. Термодинамические свойства
- •1) При больших и первый член разложения / (и) по 1/и:
- •2) Для разложения интеграла / (и) при и —»• 0 прибавляем и вычитаем из него интеграл
- •§ 41. Гриновские функции сверхтекучего ферми-газа
- •§ 42. Температурные гриновские функции сверхтекучего ферми-газа
- •1) Эту формулу можно получить, написав 1 1 г 1 , 1
- •§ 43. Сверхпроводимость металлов
- •§ 44. Сверхпроводящий ток
- •2) Феноменологическая электродинамика сверхпроводников изложена в другом томе этого курса—см. VIII глава VI.
- •2) Изложенный вывод уравнения (44,8) принадлежит л. Д. Ландау (1941).
- •§ 45. Уравнения Гинзбурга — Ландау
- •2) Этот выбор (в том числе отождествление m с истинной массой электрона) не имеет, конечно, глубокого смысла и условен в той же мере, как и определение ns в (44,2).
- •§ 46. Поверхностное натяжение на границе сверхпроводящей и нормальной фаз
- •8 Е. М. Лифшнц, л. П. Патаюаквй
- •§ 47. Два рода сверхпроводников
- •2) Не путать его с промежуточным состоянием сверхпроводников первого рода, возникающим при определенных конфигурациях образца и внешнего магнитного поля!
- •§ 47] Два рода сверхпроводников 229
- •§ 48. Структура смешанного состояния
- •1) В этом параграфе буква г будет обозначать цилиндрическую координату—расстояние от оси.
- •J) Второй член в (48,13), будучи выражен через ток j, принимает вид
- •2) Наиболее выгодна, по-видимому, решетка, образованная равносторонними треугольниками с вихревыми нитями в их вершинах.
- •§ 49. Диамагнитная восприимчивость выше точки перехода
- •§ 49] Диамагнитная восприимчивость выше точки перехода 241
- •§ 50. Эффект Джозефсона
- •§ 51. Связь тока с магнитным полем в сверхпроводнике
- •§ 52. Глубина проникновения магнитного поля в сверхпроводник
- •§ 53. Сверхпроводящие сплавы
- •§ 54. Эффект Купера при отличных от нуля орбитальных моментах пары
- •2) Переход происходит при температуре —ю-3 к. Заметим, что малость Тс обеспечивает существование области применимости теории нормальной ферми-жидкости к жидкому Не3.
- •Глава VI
- •§ 55. Электрон в периодическом поле
- •2. Найти закон дисперсии для одномерного движения частицы в слабом периодическом поле 0 (х).
- •§ 56. Влияние внешнего поля на движение электрона в решетке
- •§ 56J влияние внешнего поля на движение электрона
- •§ 57. Квазиклассические траектории
- •§ 58. Квазиклассические уровни энергии
- •§ 58] Квазиклассические уровни энергии 285
- •1) При движении в однородном магнитном поле адиабатическим инвариантом, не зависящим от выбора векторного потенциала, является интеграл
- •2) Для свободных электронов (см. Примечание на стр. 282) условие (58,7)
- •§ 59. Тензор эффективных масс электрона в решетке
- •§ 60. Симметрия состояний электрона в решетке в магнитном поле
- •§ 61. Электронный спектр нормальных металлов
- •§ 62. Гриновская функция электронов в металле
- •§ 62] Гриновская функция электронов в металле 305
- •§ 63. Эффект де Гааза — ван Альфена
- •2) Ср. V § 60, где этот эффект рассматривался для идеального электронного газа.
- •2) Ср. VIII § 18, где аналогичное условие выведено для электрического случая.
- •§ 64. Электрон-фононное взаимодействие
- •§ 65. Влияние электрон-фононного взаимодействия на электронный спектр в металле
- •2) Излагаемые в этом параграфе результаты принадлежат а. Б. Мигдалу (1958).
- •11 В. М. Лифшнц, л. П. Питаевский
- •§ 66. Электронный спектр твердых диэлектриков
- •§ 67. Электроны и дырки в полупроводниках
- •§ 68. Электронный спектр вблизи точки вырождения
- •1). Такая ситуация имеет место для дна дырочной зоны в алмазе, кремнии и германии, которые все имеют решетку одинакового типа.
- •1) Примером является одна из модификаций олова—серое олово.
- •Глава VII
- •§ 69. Уравнение движения магнитного момента в ферромагнетике
- •1) Экспериментальные данные о гиромагнитных отношениях g, дающие для ферромагнетиков значения, очень близкие к 2, свидетельствуют о спиновой природе ферромагнетизма.
- •§ 70. Магноны в ферромагнетике. Спектр
- •§ 71. Магноны в ферромагнетике. Термодинамические величины
- •§ 72. Спиновый гамильтониан
- •§ 72] Спиновый гамильтониан 357
- •2. Пренебрегая взаимодействием между спинами, вычислить намагниченность парамагнетика при произвольном соотношении между р§ и т.
- •§ 73. Взаимодействие магнонов
- •§ 74. Магноны в антиферромагнетике
- •Глава VIII
- •§ 75. Гриновская функция фотона в среде
- •§ 76. Флуктуации электромагнитного поля
- •§ 77. Электромагнитные флуктуации в неограниченной среде
- •2. То же для тела с магнитной поляризуемостью a,-j (to) *).
- •3. Определить флуктуации электромагнитного поля в условиях задачи 1 считая, однако, что температура среды много ниже температуры тела.
- •2 27 Eha/t_l г2 eftco/r_,
- •§ 78. Флуктуации тока в линейных цепях
- •§ 80. Тензор напряжений ван-дер-ваальсовых сил
- •§ 81. Молекулярные силы взаимодействия между твердыми телами. Общая формула
- •§ 82. Молекулярные силы взаимодействия между твердыми телами. Предельные случаи
- •§ 83. Асимптотическое поведение корреляционной функции в жидкости
- •§ 84. Операторное выражение для диэлектрической проницаемости
- •§ 85. Вырожденная плазма
- •§ 85] Вырожденная пллзма 417
- •2 YnVTe3
- •Глава IX
- •§ 86. Динамический формфактор жидкости
- •§ 87. Правила сумм для формфактора
- •§ 87] Правило сумм для формфактора 431
- •§ 88. Гидродинамические флуктуации
- •§ 89. Гидродинамические флуктуации в неограниченной среде
- •1. Найти корреляционную функцию флуктуации числа растворенных час- тиц в слабом растворе.
- •2. Найти корреляционную функцию флуктуации давления в жидкости, обладающей большой диспергирующей второй вязкостью £ (со) (связанной с медленной релаксацией некоторого параметра).
- •§ 90. Операторные выражения для кинетических коэффициентов
- •§91. Динамический формфактор ферми-жидкости
- •198, 207, 208, 213, 263 Восприимчивость парамагнетика 358, 359
- •216, 245, 276, 370 Квазиимпульс 267
- •118, 196, 208 Сила взаимного трения 142 Скелетная диаграмма 74, 84 Случайные потоки 434
- •384, 425, 435 Форм-фактор динамический 422
- •1) Этот указатель дополняет оглавле] включены термины и понятия, непосредствен
- •399, В формуле (81,6) в последнем выражении должно быть
§ 50. Эффект Джозефсона
Рассмотрим два сверхпроводника, разделенных тонким слоем диэлектрика. Для электронов этот слой представляет собой потенциальный барьер, и если слой достаточно тонок, то существует конечная вероятность их проникновения через него путем квантового туннелирования. Даже если коэффициент пропускания барьера мал, его отличие от нуля имеет принципиальное значение: оба сверхпроводника становятся единой системой, описывающейся единой конденсатной волновой функцией. Это обстоятельство приводит к эффектам, впервые предсказанным Джозефсоном (В. D. Josephson, 1962).
Единство конденсатной волновой функции системы означает, что через контакт между двумя сверхпроводниками может течь, в отсутствие приложенной извне разности потенциалов, сверхпроводящий ток. Подобно тому как внутри сверхпроводников плотность тока определяется градиентом фазы Ф конденсатной волновой функции, так плотность / протекающего через контакт сверхпроводящего тока связана с разностью значений Ф2 и фазы на обоих сторонах контакта1). Поскольку значения разности Ф2— Фг, отличающиеся на целое кратное от 2я, физически тождественны, то ясно, что функция
(50,1)
должна быть периодической с периодом 2я. Операция обращения времени меняет знак тока / и в то же время меняет знак фазы Ф21 (поскольку волновые функции заменяются своими комплексно-сопряженными). Это значит, что функция (50,1) должна быть нечетной и обращаться в нуль при Ф21 = 0. Будучи, разумеется, ограниченной, функция /(Ф^) имеет свои максимальное и минимальное значения, между которыми она и меняется при изменении разности фаз, а в силу нечетности функции эти значения одинаковы по абсолютной величине; обозначим их через ± \т.
Следует отметить, что запись (50,1) предполагает пренебрежение влиянием на ток со стороны собственного магнитного поля токов внутри контакта. В противном случае вместо разности Ф21 должно было бы фигурировать калибровочно инвариантное выражение
2
х)
Для того чтобы сверхпроводящий ток
через контакт имел заметную величину,
толщина диэлектрического слоя фактически
должна быть очень мала: — Ю-7
см. Такие расстояния малы даже по
сравнению с наименьшим характерным
параметром длины в сверхпроводнике—длиной
когерентности £0.
В этом смысле слой должен рассматриваться
как бесконечно тонкий, а поведение
фазы внутри него в теории вообще не
фигурирует.
Ввиду очень малой толщины диэлектрического слоя условие допустимости пренебрежения стоящим здесь интегралом от непрерывной функции Ах(х) легко выполняется (а значения самого потенциала Ах на обеих сторонах контакта можно считать одинаковыми).
Определение вида функции /(Ф21) во всей области температур возможно, лишь на основе микроскопической теории. Мы ограничимся здесь феноменологическим рассмотрением в рамках применимости теории Гинзбурга—Ландау.
Если бы контакт был совсем непроницаем для электронов, волновые функции гр каждого из сверхпроводников удовлетворяли бы на своем краю контакта граничным условиям (45,15):
£-£м.-о.
Конечная проницаемость барьера и конечность значений гр на границах контакта приводят к появлению в правых сторонах этих условий отличных от нуля выражений, зависящих от значений гр по другую сторону контакта. Ввиду малости гр (вблизи точки перехода Тс) можно ограничиться в этих функциях линейными по гр членами, т. е. написать
коэффициент 1/Я пропорционален проницаемости барьера. Равенства (50,2) должны удовлетворять требованиям симметрии относительно обращения времени: они должны оставаться справедливыми при преобразовании гр—*гр*, А—►—А; отсюда следует, что постоянная К вещественна (тогда при указанном преобразовании равенства (50,2) просто совпадают со своими комплексно-сопряженными).
Связь между величиной сверхпроводящего тока через контакт и разностью фаз функции гр можно определить, применив формулу (45,14) к какой-либо из сторон контакта (скажем, со стороны 1):
/
Подставив сюда dtyjdx из граничного условия (50,2), получим
Для контактов одинаковых металлов величины ^ и гр2 отли-ются только своей фазой; находим тогда для плотности тока:
/ = /fflsin<Dsi, /я = 4^12- (50'3)
ЭФФЕКТ ДЖОЗЕФСОНА
245
При приближении к точке перехода | ip |2 стремится к нулю как Тс —Т; по такому же закону, следовательно, стремится к нулю и максимальная плотность тока через контакт1).
Пусть теперь к туннельному контакту приложена от внешнего источника некоторая разность потенциалов, т. е. в контакте имеется электрическое поле Е. Будем описывать-это поле скалярным потенциалом, обозначив его здесь через V: Е = — W-Влияние этого поля на сверхпроводящий ток через контакт можно выяснить уже на основании требований калибровочной инвариантности.
В отсутствие поля (при F = 0) фаза волновой функции не зависит от времени: дФ/dt = 02). Для обобщения этого равенства на случай наличия электрического поля замечаем, что общее соотношение должно быть инвариантно по отношению к калибровочному преобразованию скалярного потенциала
не затрагивающему векторный потенциал (который предполагается не зависящим от времени). Точно так, как это было сделано при выводе преобразования (44,3), (44,6), найдем, что одновременно с V должна быть преобразована фаза волновой функции согласно
Ф — Ф + (50,5)
Отсюда ясно, что калибровочно инвариантным будет соотношение
f + (50,6)
переходящее в дФ/д/ = 0 при V = 0.
1) Микроскопическая
теория, основанная на модели БКШ,
показывает,
что такая же связь (50,3)
между /'
и Фн
имеет место при всех температурах.
Эта
же теория позволяет связать jm
с
электрическим сопротивлением кон-
такта
между двумя металлами в нормальном
состоянии. Изложение этой тео-
рии
можно найти в книге: И.
О. Кулик, И. К. Янсон, Эффект
Джозефсона
в сверхпроводящих
туннельных структурах, «Наука», 1970.
2) Напомним
(ср. примечание на стр. 150), что временной
множитель
ехр (—2('ui/ft)
исключен
из волновой функции тем, что гамильтониан
системы
■
Н заменен
на
Н'
=
H—\iN.
Ф _(т>(0) 2£т/ /
Подставив это выражение в (50,3), находим сверхпроводящий ток через контакт
j = jmsin^-^V21ty (50,7)
Мы приходим к замечательному результату: наложение на туннельный контакт постоянной разности потенциалов приводит к появлению сверхпроводящего переменного тока с частотой
<»/ = j\eVti\. (50,8)
Потребляемая в контакте мощность дается произведением }V2i; ее среднее (по времени) значение равно нулю, т. е. систематическая затрата энергии от внешнего источника отсутствует— как и должно быть для сверхпроводящего тока, не связанного с диссипацией энергии. Подчеркнем, однако^ что при наличии внешней электродвижущей силы через контакт будет протекать также и некоторый нормальный ток (слабый при малом V21), сопровождающийся диссипацией.
Заключение о периодическом с частотой (50,8) изменении сверхпроводящего тока через контакт следует уже из самого факта периодической зависимости / от Ф21 и линейной зависимости Ф21 от времени; это заключение не связано с какими-либо предположениями о величине разности потенциалов. Конкретная же формула (50,7) справедлива лишь при условии малости частоты со,- по сравнению с характерной для сверхпроводимости частотой Aj%:
Ua/ = 2\eV\^A(T). (50,9)
Задача
Написать уравнение для тока в цепи, состоящей из последовательно сое-•диненных сопротивления R и сверхпроводника с туннельным контактом; в цепи действует электродвижущая сила V0.
Решение. Полное падение напряжения в цепи K0=/?/+V2i, где J— текущий по цепи ток, a V2l— разность потенциалов на контакте1). Подставив сюда J — Jт s'n Ф21 и ^21 из (50,6), получим
*) Малым (при малом V0)
нормальным
током в сверхпроводнике пренебрегаем.
Отметим, что описываемый этим уравнением переменный ток имеет несинусоидальный характер.