
- •Часть 2
- •Глава I
- •§ 1. Элементарные возбуждения в квантовой ферми-жидкости
- •§ 2. Взаимодействие квазичастиц
- •1) В явной матричной форме: pFm'
- •§ 3. Магнитная восприимчивость ферми-жидкости
- •§ 3] Магнитная восприимчивость ферми-жидкости 25
- •§ 4. Нулевой звук
- •1) Колебания, соответствующие нулевому звуку в слабо неидеальном ферми-газе, были впервые рассмотрены ю. Л. Климентовичем и в. П. Силиным (1952).
- •§ 5. Спиновые волны в ферми-жидкости
- •§ 6. Вырожденный почти идеальный ферми-газ с отталкиванием между частицами
- •Глава II
- •§ 7. Функция Грина макроскопической системы
- •2) Мы будем называть оператор н', как и н, гамильтонианом.
- •§ 8. Определение энергетического спектра по функции Грина
- •2) Аналогичное разложение в квантовой теории поля называют формулой Челлена—Лемана (ср. IV §§ 101, 108).
- •§ 9. Функция Грина идеального ферми-газа
- •§ 10. Распределение частиц ферми-жидкости по импульсам
- •§11. Вычисление термодинамических величин по функции Грина '
- •§12] Т-операторы в представлении взаимодействия
- •§ 13. Диаграммная техника для ферми-систем
- •X) Чтобы не разбивать изложения, доказательство этой теоремы отложиы на конец параграфа.
- •3 Е. М. Лифшнц, л. П. Питаевскнй
- •§ 14. Собственно-энергетическая функция
- •§ 15. Двухчастичная функция Грина
- •§16. Связь вершинной функции с амплитудой рассеяния квазичастиц
- •§ 17. Вершинная функция при малых передачах импульса
- •§ 18. Связь вершинной функции с функцией взаимодействия квазичастиц
- •§ 18] Функция взаимодействия квазйчасгиц 91
- •§ 19. Тождества для производных от функции Грина
- •1) Оно аналогично калибровочному преобразованию в квантовой электродинамике (ср. III (111,8—9)).
- •2) Ср. Более подробные рассуждения ниже, в § 23.
- •4 Е. М. Лнфшиц, л. П. Пнтаевский
- •§ 20. Вывод связи между предельным импульсом и плотностью
- •§ 20] Связь между предельным импульсом и плотностью
- •2) Формула же (2,11) для эффективной массы может быть выведена с помощью соотношения (17,17) и тождеств (19,11) и (19,15).
- •§ 21. Гриновская функция почти идеального ферми-газа
- •Глава III
- •§ 22. Элементарные возбуждения в квантовой бозе-жидкости
- •§ 23. Сверхтекучесть
- •2) Подробное изложение гидродинамики сверхтекучей жидкости дается в другом томе этого Курса (том VI).
- •I. Найти предельный закон температурной зависимости коэффициента поверхностного натяжения а жидкого гелия вблизи абсолютного нуля (к. R. Atkins, 1953).
- •2. Найти закон дисперсии епр (р) для примесных частиц в движущейся
- •§ 24] Фонолы в жидкости 119
- •§ 24. Фононы в жидкости
- •§ 24] Фононы в жидкости 121
- •§ 25. Вырожденный почти идеальный бозе-газ
- •2NPaN2 mV
- •§ 26. Волновая функция конденсата
- •2) Добавление или удаление частицы надо представлять себе как совер- шаемое бесконечно медленно. Этим исключается возбуждение системы пере- менным полем.
- •5 Е. М. Лифшиц, л. П. Патаевсквй
- •§ 27. Температурная зависимость плотности конденсата
- •§ 28. Поведение сверхтекучей плотности вблизи л-точки
- •§ 29. Квантованные вихревые нити
- •2) Эго утверждение не относится, однако, к близкой окрестности х-точки; здесь толщина вихревой нити порядка величины корреляционного радиуса флуктуации.
- •1. Найти скорость движения и импульс кругового вихревого кольца.
- •2. Найти закон дисперсии малых колебаний прямолинейной вихревой нити (w. Thomson, 1880).
- •§ 30. Вихревая нить в почти идеальном бозе-газе
- •§ 31. Гриновские функции бозе-жидкости1)
- •§ 32. Диаграммная техника для бозе-жидкости
- •2) Точнее, входящей в вершину волнистой линии должен сопоставляться множитель s, а выходящей — множитель е*; ввиду вещественности е эти множители фактически одинаковы.
- •§ 32] Диаграммная техника для бозе-жидкости 155
- •2) Поскольку f—четная функция своего аргумента, то выбор общего знака р здесь несуществен.
- •§ 33. Собственно-энергетические функции
- •§ 34. Распад квазичастиц
- •2Л2(р —рс)3 ЗпрЛ4
- •§ 35. Свойства спектра вблизи точки его окончания
- •1) Содержание этого параграфа принадлежит л. П. Питаевскому (1959).
- •§ 36. Гриновские функции при конечных температурах1)
- •§ 36] Гриновские функции при конечных температурах 173
- •§ 37. Температурные функции Грина
- •§ 38. Диаграммная техника для температурных функций Грина
- •Глава V
- •§ 39. Сверхтекучий ферми-газ. Энергетический спектр
- •§ 391 Сверхтекучий ферми-газ. Энергетический спектр
- •§ 40. Сверхтекучий ферми-газ. Термодинамические свойства
- •1) При больших и первый член разложения / (и) по 1/и:
- •2) Для разложения интеграла / (и) при и —»• 0 прибавляем и вычитаем из него интеграл
- •§ 41. Гриновские функции сверхтекучего ферми-газа
- •§ 42. Температурные гриновские функции сверхтекучего ферми-газа
- •1) Эту формулу можно получить, написав 1 1 г 1 , 1
- •§ 43. Сверхпроводимость металлов
- •§ 44. Сверхпроводящий ток
- •2) Феноменологическая электродинамика сверхпроводников изложена в другом томе этого курса—см. VIII глава VI.
- •2) Изложенный вывод уравнения (44,8) принадлежит л. Д. Ландау (1941).
- •§ 45. Уравнения Гинзбурга — Ландау
- •2) Этот выбор (в том числе отождествление m с истинной массой электрона) не имеет, конечно, глубокого смысла и условен в той же мере, как и определение ns в (44,2).
- •§ 46. Поверхностное натяжение на границе сверхпроводящей и нормальной фаз
- •8 Е. М. Лифшнц, л. П. Патаюаквй
- •§ 47. Два рода сверхпроводников
- •2) Не путать его с промежуточным состоянием сверхпроводников первого рода, возникающим при определенных конфигурациях образца и внешнего магнитного поля!
- •§ 47] Два рода сверхпроводников 229
- •§ 48. Структура смешанного состояния
- •1) В этом параграфе буква г будет обозначать цилиндрическую координату—расстояние от оси.
- •J) Второй член в (48,13), будучи выражен через ток j, принимает вид
- •2) Наиболее выгодна, по-видимому, решетка, образованная равносторонними треугольниками с вихревыми нитями в их вершинах.
- •§ 49. Диамагнитная восприимчивость выше точки перехода
- •§ 49] Диамагнитная восприимчивость выше точки перехода 241
- •§ 50. Эффект Джозефсона
- •§ 51. Связь тока с магнитным полем в сверхпроводнике
- •§ 52. Глубина проникновения магнитного поля в сверхпроводник
- •§ 53. Сверхпроводящие сплавы
- •§ 54. Эффект Купера при отличных от нуля орбитальных моментах пары
- •2) Переход происходит при температуре —ю-3 к. Заметим, что малость Тс обеспечивает существование области применимости теории нормальной ферми-жидкости к жидкому Не3.
- •Глава VI
- •§ 55. Электрон в периодическом поле
- •2. Найти закон дисперсии для одномерного движения частицы в слабом периодическом поле 0 (х).
- •§ 56. Влияние внешнего поля на движение электрона в решетке
- •§ 56J влияние внешнего поля на движение электрона
- •§ 57. Квазиклассические траектории
- •§ 58. Квазиклассические уровни энергии
- •§ 58] Квазиклассические уровни энергии 285
- •1) При движении в однородном магнитном поле адиабатическим инвариантом, не зависящим от выбора векторного потенциала, является интеграл
- •2) Для свободных электронов (см. Примечание на стр. 282) условие (58,7)
- •§ 59. Тензор эффективных масс электрона в решетке
- •§ 60. Симметрия состояний электрона в решетке в магнитном поле
- •§ 61. Электронный спектр нормальных металлов
- •§ 62. Гриновская функция электронов в металле
- •§ 62] Гриновская функция электронов в металле 305
- •§ 63. Эффект де Гааза — ван Альфена
- •2) Ср. V § 60, где этот эффект рассматривался для идеального электронного газа.
- •2) Ср. VIII § 18, где аналогичное условие выведено для электрического случая.
- •§ 64. Электрон-фононное взаимодействие
- •§ 65. Влияние электрон-фононного взаимодействия на электронный спектр в металле
- •2) Излагаемые в этом параграфе результаты принадлежат а. Б. Мигдалу (1958).
- •11 В. М. Лифшнц, л. П. Питаевский
- •§ 66. Электронный спектр твердых диэлектриков
- •§ 67. Электроны и дырки в полупроводниках
- •§ 68. Электронный спектр вблизи точки вырождения
- •1). Такая ситуация имеет место для дна дырочной зоны в алмазе, кремнии и германии, которые все имеют решетку одинакового типа.
- •1) Примером является одна из модификаций олова—серое олово.
- •Глава VII
- •§ 69. Уравнение движения магнитного момента в ферромагнетике
- •1) Экспериментальные данные о гиромагнитных отношениях g, дающие для ферромагнетиков значения, очень близкие к 2, свидетельствуют о спиновой природе ферромагнетизма.
- •§ 70. Магноны в ферромагнетике. Спектр
- •§ 71. Магноны в ферромагнетике. Термодинамические величины
- •§ 72. Спиновый гамильтониан
- •§ 72] Спиновый гамильтониан 357
- •2. Пренебрегая взаимодействием между спинами, вычислить намагниченность парамагнетика при произвольном соотношении между р§ и т.
- •§ 73. Взаимодействие магнонов
- •§ 74. Магноны в антиферромагнетике
- •Глава VIII
- •§ 75. Гриновская функция фотона в среде
- •§ 76. Флуктуации электромагнитного поля
- •§ 77. Электромагнитные флуктуации в неограниченной среде
- •2. То же для тела с магнитной поляризуемостью a,-j (to) *).
- •3. Определить флуктуации электромагнитного поля в условиях задачи 1 считая, однако, что температура среды много ниже температуры тела.
- •2 27 Eha/t_l г2 eftco/r_,
- •§ 78. Флуктуации тока в линейных цепях
- •§ 80. Тензор напряжений ван-дер-ваальсовых сил
- •§ 81. Молекулярные силы взаимодействия между твердыми телами. Общая формула
- •§ 82. Молекулярные силы взаимодействия между твердыми телами. Предельные случаи
- •§ 83. Асимптотическое поведение корреляционной функции в жидкости
- •§ 84. Операторное выражение для диэлектрической проницаемости
- •§ 85. Вырожденная плазма
- •§ 85] Вырожденная пллзма 417
- •2 YnVTe3
- •Глава IX
- •§ 86. Динамический формфактор жидкости
- •§ 87. Правила сумм для формфактора
- •§ 87] Правило сумм для формфактора 431
- •§ 88. Гидродинамические флуктуации
- •§ 89. Гидродинамические флуктуации в неограниченной среде
- •1. Найти корреляционную функцию флуктуации числа растворенных час- тиц в слабом растворе.
- •2. Найти корреляционную функцию флуктуации давления в жидкости, обладающей большой диспергирующей второй вязкостью £ (со) (связанной с медленной релаксацией некоторого параметра).
- •§ 90. Операторные выражения для кинетических коэффициентов
- •§91. Динамический формфактор ферми-жидкости
- •198, 207, 208, 213, 263 Восприимчивость парамагнетика 358, 359
- •216, 245, 276, 370 Квазиимпульс 267
- •118, 196, 208 Сила взаимного трения 142 Скелетная диаграмма 74, 84 Случайные потоки 434
- •384, 425, 435 Форм-фактор динамический 422
- •1) Этот указатель дополняет оглавле] включены термины и понятия, непосредствен
- •399, В формуле (81,6) в последнем выражении должно быть
Глава III
СВЕРХТЕКУЧЕСТЬ
§ 22. Элементарные возбуждения в квантовой бозе-жидкости
Обратимся теперь к изучению квантовых жидкостей с энергетическим спектром совершенно иного типа, который можно назвать бозевским1).
Этот спектр характеризуется тем, что элементарные возбуждения (отсутствующие в основном состоянии жидкости) могут появляться и исчезать поодиночке. Но момент импульса всякой квантовомеханической системы (в данном случае—жидкости) может испытывать изменения лишь на целое число. Поэтому возникающие поодиночке элементарные возбуждения должны обладать целочисленным моментом и, следовательно, подчиняться статистике Бозе. Спектром такого типа должна во всяком случае обладать всякая квантовая жидкость, состоящая из частиц с целым спином (таков жидкий изотоп Не4).
Напомним для сравнения, что в ферми-жидкости, при описании -ее в терминах спектра элементарных возбуждений, отсутствующих в основном состоянии (см. конец § 1), эти возбуждения могут появляться или исчезать лишь парами. Именно с этим связана возможность элементарным возбуждениям в этом типе спектра иметь полуцелый спин.
В квантовой бозе-жидкости элементарные возбуждения с малыми импульсами р (длина волны велика по сравнению с межатомными расстояниями) соответствуют обычным гидродинамическим звуковым волнам, т. е. представляют собой фононы. Это значит, что энергия таких квазичастиц является линейной функцией их импульса:
8 = up, (22,1),
где и—скорость звука в жидкости. Последняя дается обычной формулой и2 = дР/др, причем нет необходимости уточнять,
!) Теория таких квантовых жидкостей была создана Л. Д.'Ланда] в 1940—41 г., вслед за открытием П. Л. Капицей сверхтекучести жидкого гелия. Этими открытиями было положено начало всему развитию современной физики квантовых жидкостей.
берется ли производная при постоянной температуре Г или энтропии 5, поскольку при 7-^-0 также и 5—*-О1).
Число элементарных возбуждений в бозе-жидкости стремится к нулю при Т—»-0, и при низких температурах, когда их плотность достаточно мала, квазичастицы можно считать не взаимодействующими друг с другом, т. е. образующими идеальный бозе-газ. Поэтому статистически равновесное распределение элементарных возбуждений в бозе-жидкости дается формулой распределения Бозе (с равным нулю химическим потенциалом — ср. примечание на стр. 18)
я(р) = !>е(р)/г— I]-1-' (22,2)
С помощью этого распределения, и зная зависимость г(р) при малых р, можно вычислить термодинамические величины жидкости для таких близких к абсолютному нулю температур, при которых практически все имеющиеся в жидкости элементарные возбуждения обладают малыми энергиями, т. е. являются фононами. Соответствующие формулы можно написать сразу, воспользовавшись выражениями для термодинамических величин твердого тела при низких температурах (см. V § 64). Разница заключается, лишь в том, что вместо трех возможных направлений поляризации звуковых волн в твердом теле (одно продольное и два поперечных) в жидкости существует лишь одно (продольное); поэтому все выражения для термодинамических величин следует разделить на 3. Так, для свободной энергии жидкости имеем
f = P--F5rS' «22'3>
где F0 — свободная энергия при абсолютном нуле. Энергия жидкости равна
е-е- + ущ&- <22'4>
а теплоемкость
2я?Т3
она пропорциональна кубу температуры.
1)
Понятие о фононах было введено в V §§
71, 72 для элементарных возбуждений в
твердых телах. Подчеркнем, что импульс
элементарного возбуждения в
микроскопически однородной
системе—жидкости—есть истинный
импульс, а не квазиимпульс, как в
периодическом поле кристаллической
решетки твердого тела.
с межатомными расстояниями. По мере увеличения импульса кривая е = е (/?), конечно, отклоняется от линейной зависимости; дальнейший ее ход зависит от конкретного закона взаимодействия молекул жидкости и не может быть поэтому определен в общем виде.
10
/ г з p/ti,ai-f
Рис. 2,
убывает и при определенном значении импульса р0 проходит Через минимум1). В тепловом равновесии большинство элементарных возбуждений в жидкости имеет энергии в областях вблизи минимумов функции г(р), т.е. в области малых е (область вблизи е = 0), и в области значения г(р0). Поэтому именно эти области особенно существенны. Вблизи точки р = р0 функция г(р) может быть разложена по степеням р—р0. Линейный член в разложении отсутствует, и с точностью до членов второго порядка имеем
!)
Эта форма спектра была впервые предложена
Л.
Д. Ландау (1947)
на основании анализа экспериментальных
данных о термодинамических величинах
жидкого гелия; в дальнейшем она была
подтверждена экспериментально опытами
по рассеянию нейтронов.
Качественная
теория спектра такого типа дана Фейнманом
(R.
P. Feynman, 1964);
см. ниже примечание на стр. 429.
Эмпирические значения параметров энергетического спектра жидкого гелия (экстраполированные к нулевому давлению при плотности р=0,145 г/см3) таковы1):
и = 2,4-10* см/сек, А = 8,7К,
(22,7)
/\,/Л=1,9-108 см"1, m* = 0,16т (Не4).
Поскольку энергия ротона всегда содержит величину А, большую по сравнению с Т — при температурах достаточно низких для того, чтобы можно было говорить о «ротонном газе»,— то последний можно описывать вместо распределения Бозе распределением Больцмана. Соответственно этому, для вычисления ротонной части термодинамических величин жидкого гелия исходим из формулы для свободной энергии боль-цмановского газа
F = -NTln%-[e-«rdx, dx = -%- N J (2я&)3
(см. V § 41). При этом под N в этой формуле надо понимать число ротонов в жидкости. Но это число само определяется условием термодинамического равновесия, т. е. условием минимальности свободной энергии. Приравняв dFjdN нулю, найдем для числа ротонов
Nv = v\e-*iTdx (22,8)
(что соответствует, естественно, больцмановскому распределению с равным нулю химическим потенциалом). Соответствующее значение свободной энергии
Fv= — VT\e-*lTdx.
х)
Укажем также значение химического
потенциала жидкого гелия при Г = 0: н. =
—7.16 К.
Отсюда вклад ротонов в энтропию и теплоемкость:
Р(1 + т)> CP = A/P(4 + A + ^). (22,10)
Мы видим, что температурная зависимость ротонной части термодинамических величин в основном экспоненциальна. Поэтому при достаточно низких температурах (дли жидкого гелия — ниже примерно чем 0,8 К) ротонная часть меньше фононной, а при более высоких температурах положение меняется, и ротонный вклад превосходит фононный.