
- •Часть 2
- •Глава I
- •§ 1. Элементарные возбуждения в квантовой ферми-жидкости
- •§ 2. Взаимодействие квазичастиц
- •1) В явной матричной форме: pFm'
- •§ 3. Магнитная восприимчивость ферми-жидкости
- •§ 3] Магнитная восприимчивость ферми-жидкости 25
- •§ 4. Нулевой звук
- •1) Колебания, соответствующие нулевому звуку в слабо неидеальном ферми-газе, были впервые рассмотрены ю. Л. Климентовичем и в. П. Силиным (1952).
- •§ 5. Спиновые волны в ферми-жидкости
- •§ 6. Вырожденный почти идеальный ферми-газ с отталкиванием между частицами
- •Глава II
- •§ 7. Функция Грина макроскопической системы
- •2) Мы будем называть оператор н', как и н, гамильтонианом.
- •§ 8. Определение энергетического спектра по функции Грина
- •2) Аналогичное разложение в квантовой теории поля называют формулой Челлена—Лемана (ср. IV §§ 101, 108).
- •§ 9. Функция Грина идеального ферми-газа
- •§ 10. Распределение частиц ферми-жидкости по импульсам
- •§11. Вычисление термодинамических величин по функции Грина '
- •§12] Т-операторы в представлении взаимодействия
- •§ 13. Диаграммная техника для ферми-систем
- •X) Чтобы не разбивать изложения, доказательство этой теоремы отложиы на конец параграфа.
- •3 Е. М. Лифшнц, л. П. Питаевскнй
- •§ 14. Собственно-энергетическая функция
- •§ 15. Двухчастичная функция Грина
- •§16. Связь вершинной функции с амплитудой рассеяния квазичастиц
- •§ 17. Вершинная функция при малых передачах импульса
- •§ 18. Связь вершинной функции с функцией взаимодействия квазичастиц
- •§ 18] Функция взаимодействия квазйчасгиц 91
- •§ 19. Тождества для производных от функции Грина
- •1) Оно аналогично калибровочному преобразованию в квантовой электродинамике (ср. III (111,8—9)).
- •2) Ср. Более подробные рассуждения ниже, в § 23.
- •4 Е. М. Лнфшиц, л. П. Пнтаевский
- •§ 20. Вывод связи между предельным импульсом и плотностью
- •§ 20] Связь между предельным импульсом и плотностью
- •2) Формула же (2,11) для эффективной массы может быть выведена с помощью соотношения (17,17) и тождеств (19,11) и (19,15).
- •§ 21. Гриновская функция почти идеального ферми-газа
- •Глава III
- •§ 22. Элементарные возбуждения в квантовой бозе-жидкости
- •§ 23. Сверхтекучесть
- •2) Подробное изложение гидродинамики сверхтекучей жидкости дается в другом томе этого Курса (том VI).
- •I. Найти предельный закон температурной зависимости коэффициента поверхностного натяжения а жидкого гелия вблизи абсолютного нуля (к. R. Atkins, 1953).
- •2. Найти закон дисперсии епр (р) для примесных частиц в движущейся
- •§ 24] Фонолы в жидкости 119
- •§ 24. Фононы в жидкости
- •§ 24] Фононы в жидкости 121
- •§ 25. Вырожденный почти идеальный бозе-газ
- •2NPaN2 mV
- •§ 26. Волновая функция конденсата
- •2) Добавление или удаление частицы надо представлять себе как совер- шаемое бесконечно медленно. Этим исключается возбуждение системы пере- менным полем.
- •5 Е. М. Лифшиц, л. П. Патаевсквй
- •§ 27. Температурная зависимость плотности конденсата
- •§ 28. Поведение сверхтекучей плотности вблизи л-точки
- •§ 29. Квантованные вихревые нити
- •2) Эго утверждение не относится, однако, к близкой окрестности х-точки; здесь толщина вихревой нити порядка величины корреляционного радиуса флуктуации.
- •1. Найти скорость движения и импульс кругового вихревого кольца.
- •2. Найти закон дисперсии малых колебаний прямолинейной вихревой нити (w. Thomson, 1880).
- •§ 30. Вихревая нить в почти идеальном бозе-газе
- •§ 31. Гриновские функции бозе-жидкости1)
- •§ 32. Диаграммная техника для бозе-жидкости
- •2) Точнее, входящей в вершину волнистой линии должен сопоставляться множитель s, а выходящей — множитель е*; ввиду вещественности е эти множители фактически одинаковы.
- •§ 32] Диаграммная техника для бозе-жидкости 155
- •2) Поскольку f—четная функция своего аргумента, то выбор общего знака р здесь несуществен.
- •§ 33. Собственно-энергетические функции
- •§ 34. Распад квазичастиц
- •2Л2(р —рс)3 ЗпрЛ4
- •§ 35. Свойства спектра вблизи точки его окончания
- •1) Содержание этого параграфа принадлежит л. П. Питаевскому (1959).
- •§ 36. Гриновские функции при конечных температурах1)
- •§ 36] Гриновские функции при конечных температурах 173
- •§ 37. Температурные функции Грина
- •§ 38. Диаграммная техника для температурных функций Грина
- •Глава V
- •§ 39. Сверхтекучий ферми-газ. Энергетический спектр
- •§ 391 Сверхтекучий ферми-газ. Энергетический спектр
- •§ 40. Сверхтекучий ферми-газ. Термодинамические свойства
- •1) При больших и первый член разложения / (и) по 1/и:
- •2) Для разложения интеграла / (и) при и —»• 0 прибавляем и вычитаем из него интеграл
- •§ 41. Гриновские функции сверхтекучего ферми-газа
- •§ 42. Температурные гриновские функции сверхтекучего ферми-газа
- •1) Эту формулу можно получить, написав 1 1 г 1 , 1
- •§ 43. Сверхпроводимость металлов
- •§ 44. Сверхпроводящий ток
- •2) Феноменологическая электродинамика сверхпроводников изложена в другом томе этого курса—см. VIII глава VI.
- •2) Изложенный вывод уравнения (44,8) принадлежит л. Д. Ландау (1941).
- •§ 45. Уравнения Гинзбурга — Ландау
- •2) Этот выбор (в том числе отождествление m с истинной массой электрона) не имеет, конечно, глубокого смысла и условен в той же мере, как и определение ns в (44,2).
- •§ 46. Поверхностное натяжение на границе сверхпроводящей и нормальной фаз
- •8 Е. М. Лифшнц, л. П. Патаюаквй
- •§ 47. Два рода сверхпроводников
- •2) Не путать его с промежуточным состоянием сверхпроводников первого рода, возникающим при определенных конфигурациях образца и внешнего магнитного поля!
- •§ 47] Два рода сверхпроводников 229
- •§ 48. Структура смешанного состояния
- •1) В этом параграфе буква г будет обозначать цилиндрическую координату—расстояние от оси.
- •J) Второй член в (48,13), будучи выражен через ток j, принимает вид
- •2) Наиболее выгодна, по-видимому, решетка, образованная равносторонними треугольниками с вихревыми нитями в их вершинах.
- •§ 49. Диамагнитная восприимчивость выше точки перехода
- •§ 49] Диамагнитная восприимчивость выше точки перехода 241
- •§ 50. Эффект Джозефсона
- •§ 51. Связь тока с магнитным полем в сверхпроводнике
- •§ 52. Глубина проникновения магнитного поля в сверхпроводник
- •§ 53. Сверхпроводящие сплавы
- •§ 54. Эффект Купера при отличных от нуля орбитальных моментах пары
- •2) Переход происходит при температуре —ю-3 к. Заметим, что малость Тс обеспечивает существование области применимости теории нормальной ферми-жидкости к жидкому Не3.
- •Глава VI
- •§ 55. Электрон в периодическом поле
- •2. Найти закон дисперсии для одномерного движения частицы в слабом периодическом поле 0 (х).
- •§ 56. Влияние внешнего поля на движение электрона в решетке
- •§ 56J влияние внешнего поля на движение электрона
- •§ 57. Квазиклассические траектории
- •§ 58. Квазиклассические уровни энергии
- •§ 58] Квазиклассические уровни энергии 285
- •1) При движении в однородном магнитном поле адиабатическим инвариантом, не зависящим от выбора векторного потенциала, является интеграл
- •2) Для свободных электронов (см. Примечание на стр. 282) условие (58,7)
- •§ 59. Тензор эффективных масс электрона в решетке
- •§ 60. Симметрия состояний электрона в решетке в магнитном поле
- •§ 61. Электронный спектр нормальных металлов
- •§ 62. Гриновская функция электронов в металле
- •§ 62] Гриновская функция электронов в металле 305
- •§ 63. Эффект де Гааза — ван Альфена
- •2) Ср. V § 60, где этот эффект рассматривался для идеального электронного газа.
- •2) Ср. VIII § 18, где аналогичное условие выведено для электрического случая.
- •§ 64. Электрон-фононное взаимодействие
- •§ 65. Влияние электрон-фононного взаимодействия на электронный спектр в металле
- •2) Излагаемые в этом параграфе результаты принадлежат а. Б. Мигдалу (1958).
- •11 В. М. Лифшнц, л. П. Питаевский
- •§ 66. Электронный спектр твердых диэлектриков
- •§ 67. Электроны и дырки в полупроводниках
- •§ 68. Электронный спектр вблизи точки вырождения
- •1). Такая ситуация имеет место для дна дырочной зоны в алмазе, кремнии и германии, которые все имеют решетку одинакового типа.
- •1) Примером является одна из модификаций олова—серое олово.
- •Глава VII
- •§ 69. Уравнение движения магнитного момента в ферромагнетике
- •1) Экспериментальные данные о гиромагнитных отношениях g, дающие для ферромагнетиков значения, очень близкие к 2, свидетельствуют о спиновой природе ферромагнетизма.
- •§ 70. Магноны в ферромагнетике. Спектр
- •§ 71. Магноны в ферромагнетике. Термодинамические величины
- •§ 72. Спиновый гамильтониан
- •§ 72] Спиновый гамильтониан 357
- •2. Пренебрегая взаимодействием между спинами, вычислить намагниченность парамагнетика при произвольном соотношении между р§ и т.
- •§ 73. Взаимодействие магнонов
- •§ 74. Магноны в антиферромагнетике
- •Глава VIII
- •§ 75. Гриновская функция фотона в среде
- •§ 76. Флуктуации электромагнитного поля
- •§ 77. Электромагнитные флуктуации в неограниченной среде
- •2. То же для тела с магнитной поляризуемостью a,-j (to) *).
- •3. Определить флуктуации электромагнитного поля в условиях задачи 1 считая, однако, что температура среды много ниже температуры тела.
- •2 27 Eha/t_l г2 eftco/r_,
- •§ 78. Флуктуации тока в линейных цепях
- •§ 80. Тензор напряжений ван-дер-ваальсовых сил
- •§ 81. Молекулярные силы взаимодействия между твердыми телами. Общая формула
- •§ 82. Молекулярные силы взаимодействия между твердыми телами. Предельные случаи
- •§ 83. Асимптотическое поведение корреляционной функции в жидкости
- •§ 84. Операторное выражение для диэлектрической проницаемости
- •§ 85. Вырожденная плазма
- •§ 85] Вырожденная пллзма 417
- •2 YnVTe3
- •Глава IX
- •§ 86. Динамический формфактор жидкости
- •§ 87. Правила сумм для формфактора
- •§ 87] Правило сумм для формфактора 431
- •§ 88. Гидродинамические флуктуации
- •§ 89. Гидродинамические флуктуации в неограниченной среде
- •1. Найти корреляционную функцию флуктуации числа растворенных час- тиц в слабом растворе.
- •2. Найти корреляционную функцию флуктуации давления в жидкости, обладающей большой диспергирующей второй вязкостью £ (со) (связанной с медленной релаксацией некоторого параметра).
- •§ 90. Операторные выражения для кинетических коэффициентов
- •§91. Динамический формфактор ферми-жидкости
- •198, 207, 208, 213, 263 Восприимчивость парамагнетика 358, 359
- •216, 245, 276, 370 Квазиимпульс 267
- •118, 196, 208 Сила взаимного трения 142 Скелетная диаграмма 74, 84 Случайные потоки 434
- •384, 425, 435 Форм-фактор динамический 422
- •1) Этот указатель дополняет оглавле] включены термины и понятия, непосредствен
- •399, В формуле (81,6) в последнем выражении должно быть
§ 8. Определение энергетического спектра по функции Грина
Для микроскопически однородной системы легко определить зависимость от времени и координат матричных элементов гейзенберговского ф-оператора по отношению к стационарным состояниям с определенными значениями энергии и импульса.
Зависимость от времени дается обычным экспоненциальным множителем
<n\Wa(t, г)\т>=еСа">*' <ra|ix(r)|m>, (8,1)
но поскольку гейзенберговский ^-оператор определен с помощью гамильтониана #', то
®nm = E'n — E'm=:E„—Em—\l(Nn—Nm).
Согласно общим свойствам ар-операторов, оператор Ф уменьшает (a W+ увеличивает) число частиц в системе на 1. Поэтому в матричном элементе (8,1) Nn = Nm—1, так что
conm = En(N)-Em(N + \) + p, (8,2)
где в виде аргументов указаны числа частиц в соответствующих состояниях.
Для определения координатной зависимости замечаем, что в силу однородности системы матричные элементы ее гр-операто-ров не могут измениться при смещении на любое расстояние г относительно системы. Это, однако, не означает, что матричные элементы вообще не зависят от координат. Дело в том, что отличие ip„m (г) от значения гр„т (0) в некоторой заданной точке г = 0 связано с двумя причинами: со смещением на расстояние г относительно самой системы и с перемещением точки наблюдения в другое место пространства, что также меняет фазы волновых функций. Чтобы исключить последнее изменение, сместим систему на вектор —г, т. е. применим к ее волновым функциям оператор параллельного переноса
f (—r)=e-'rP
(Р—оператор полного импульса системы; см. III (15,13)). В результате этих операций точка наблюдения вернется в исходное место пространства, но останется смещенной относительно системы на вектор г. Инвариантность матричных элементов по отношению к такому преобразованию выразится равенством
<п | i, (0) | my = <п | е1гЦа (г) е~ | ту. (8,3)
Если в.состояниях пит система обладает определенными импульсами Р„ и Рт, то
<я | % (0) | ту = eikn^T <п | Ца (г) | ту,
откуда
<n\Wa(t, г)|т> = е1(м«^-к"-г)<п|гра(0)|т>, <n\W+(t, r)\my = <m\Wa(t, r)|«>*.
где k„ffl = P„ —Pm.
С помощью этих формул можно получить важное разложение для функции Грина в импульсном пространстве, проясняющее ее физический смысл.
Ввиду «разрывного» определения функции G(t, г), при вычислении G(co, р) надо разбить интеграл по dt в (7,22) на два интеграла: от —со до 0 и от 0 до со. Во втором из них (т. е. при t = t1 — /2 > 0) имеем, раскрывая определение (7,10) по правилу умножения матриц:
G(г, г) = LGaa = -4£<01(*i)\т><т\4>а(Х2)10>
т
(суммирование по всем квантовым состояниям системы). Подставив сюда (8,4) и заметив, что в основном состоянии Ро = 0, находим
G(t, r) = -4^|<0|^a(0)|m>pe'((»om^V), (8,5)
т
где co0m = Е„ (А/)—Ет (N + 1) + ц.
Интегрирование по пространству в (7,22) (с G{t, г) из (8,5)) дает в каждом члене суммы б-функцию б (р — Рт). При интегрировании же по dt (t > 0) для обеспечения сходимости надо добавить к со бесконечно малую положительную мнимую часть, т.е. заменить со—s-co-f-iO1). Тогда получим
]$G(t, г)(tw-vWxdt =-^21<°IФ«(0)|т>|
6(Р-Рт)
Аналогичным образом вычисляется интеграл по dt от —оо до 0. При t < 0 вместо (8,5) имеем
°(*' 1-) = т£К^1^(0)|0>|гег(а^-р»»г), (8,6)
m
(8,7)
1+£,(Л0-£в(ЛЛ-1) + Ю 1
I Bmb (р + Рт) V
"*"© + ц + £в (А/-1)-£„ (JV)-«> J *
где обозначено
Л« = |<0|Ф«(0)|т>1\ Би = |</п|^а(0)|0>|2. (8,8)
Это и есть искомое разложение2). Введем обозначения