
- •Часть 1
- •Глава I
- •§ 1. Статистическое распределение
- •§ 2. Статистическая независимость
- •§ 3. Теорема Лиувилля
- •§ 4. Роль энергии
- •§ 5. Статистическая матрица
- •§ 6. Статистическое распределение в квантовой статистике
- •§ 7. Энтропия
- •§ 8. Закон возрастания энтропии
- •Глава II
- •§ 9. Температура
- •§10. Макроскопическое движение
- •1) Производную по вектору надо понимать как вектор, составляющие которого равны производным по составляющим вектора, по которому произ- водится дифференцирование.
- •§11. Адиабатический процесс
- •§ 12. Давление
- •§ 13. Работа и количество тепла
- •§ 14. Тепловая функция
- •§ 15. Свободная энергия н термодинамический потенциал
- •§16. Соотношения между производными термодинамических
- •§ 16] Производные термодинамических величин
- •§ 17. Термодинамическая шкала температуры
- •§ 18. Процесс Джоуля — Томсона
- •§ 19. Максимальная работа
- •§ 20. Максимальная работа, производимая телом, находящимся во внешней среде
- •§ 20] Тело, находящееся во внешней среде 77
- •§ 21. Термодинамические неравенства
- •§ 22. Принцип Ле-Шателье
- •§ 23. Теорема Нернста
- •§ 24. Зависимость термодинамических величин от числа частиц
- •§ 25. Равновесие тела во внешнем поле
- •§ 26. Вращающиеся тела
- •§ 27. Термодинамические соотношения в релятивистской области
- •Глава III
- •§ 28. Распределение Гиббса
- •§ 29. Распределение Максвелла
- •§ 30. Распределение вероятностей для осциллятора
- •§ 31. Свободная энергия в распределении Гиббса
- •§ 32. Термодинамическая теория возмущений
- •§ 33. Разложение по степеням %
- •§ 34. Распределение Гиббса для вращающихся тел
- •§ 35. Распределение Гиббса с переменным числом частиц
- •§ 36. Вывод термодинамических соотношений из распределения Гиббса
- •Глава IV
- •§ 37. Распределение Больцмана
- •§ 38. Распределение Больцмана в классической статистике
- •§ 39. Столкновения молекул
- •§ 40. Неравновесный идеальный газ
- •§ 41. Свободная энергия больцмановского идеального газа
- •§ 42. Уравнение состояния идеального газа
- •§ 43. Идеальный газ с постоянной теплоемкостью
- •15. Определить максимальную работу, которую можно получить с по- мощью идеального газа при охлаждении от температуры т до температуры среды т0 при постоянном объеме.
- •§ 44. Закон равнораспределения
- •§ 43. Одноатомный идеальный газ
- •§ 46. Одноатомный газ. Влияние электронного момента
- •§ 47. Двухатомный газ с молекулами из различных атомов. Вращение молекул
- •§ 48. Двухатомный газ с молекулами из одинаковых атомов. Вращение молекул
- •§ 49. Двухатомный газ. Колебания атомов
- •§ 50. Двухатомный газ. Влияние электронного момента
- •§51] Многоатомный газ 169
- •§ 51. Многоатомный газ
- •§ 52. Магнетизм газов
- •Глава V
- •§ 53. Распределение Ферми
- •§ 54. Распределение Бозе
- •§ 55. Неравновесные ферми- и бозе-газы
- •§ 56. Ферми- и бозе-газы элементарных частиц
- •§ 56] Ферми- и бозе-газы элементарных частиц 185
- •§ 57. Вырожденный электронный газ
- •§ 58. Теплоемкость вырожденного электронного газа
- •§ 59. Магнетизм электронного газа. Слабые поля
- •§ 60. Магнетизм электронного газа. Сильные поля
- •§ 61. Релятивистский вырожденный электронный газ
- •§ 62. Вырожденный бозе-газ
- •§ 63. Черное излучение
- •Глава VI
- •§ 64. Твердые тела при низких температурах
- •§ 65. Твердые тела при высоких температурах
- •§ 66. Интерполяционная формула Дебая
- •§ 67. Тепловое расширение твердых тел
- •§ 68. Сильно анизотропные кристаллы
- •§ 69. Колебания кристаллической решетки
- •§ 70. Плотность числа колебаний
- •§ 71. Фононы.
- •§ 72. Операторы рождения и уничтожения фононов
- •§ 73. Отрицательные температуры
- •Глава VII
- •§ 74. Отклонение газов от идеальности
- •§ 75. Разложение по степеням плотности
- •§ 76. Формула ван-дер Ваальса
- •§ 77. Связь вириального коэффициента с амплитудой рассеяния
- •§ 78. Термодинамические величины классической плазмы
- •§ 79. Метод корреляционных функций
- •§ 80. Термодинамические величины вырожденной плазмы
- •1) В этом случае
- •Глава VIII
- •§ 81. Условия равновесия фаз
- •§ 82. Формула Клапейрона — Клаузиуса
- •§ 83. Критическая точка
- •§ 84. Закон соответственных состояний
- •Глава IX
- •§ 85. Системы с различными частицами
- •§ 86. Правило фаз
- •§ 87. Слабые растворы
- •§ 88. Осмотическое давление
- •§ 89. Соприкосновение фаз растворителя
- •§ 90. Равновесие по отношению к растворенному веществу
- •§ 91. Выделение тепла и изменение объема при растворении
- •§ 92. Растворы сильных электролитов
- •§ 93. Смесь идеальных газов
- •§ 94. Смесь изотопов
- •§ 95. Давление пара над концентрированным раствором
- •§ 96. Термодинамические неравенства в растворах
- •§ 97. Кривые равновесия
- •§ 98. Примеры диаграмм состояния
- •§ 99. Пересечение особых кривых поверхности равновесия
- •§ 100. Газ и жидкость
- •Глава X
- •§ 101. Условие химического равновесия
- •§ 102. Закон действующих масс
- •§ 103. Теплота реакции
- •§ 104. Ионизационное равновесие
- •§ 105. Равновесие по отношению к образованию пар
- •Глава XI
- •§ 106. Уравнение состояния вещества при больших плотностях
- •§ 107. Равновесие тел с большой массой
- •§ 108. Энергия гравитирующего тела
- •§ 109. Равновесие нейтронной сферы
- •Глава XII
- •§110. Распределение Гаусса
- •§ 110] Распределение гаусса 365
- •§ 111. Распределение Гаусса для нескольких величин
- •§ 113. Флуктуации в идеальном газе
- •§114. Формула Пуассона
- •§ 115. Флуктуации в растворах
- •§ 116. Пространственная корреляция флуктуации плотности
- •§ 117. Корреляция флуктуации плотности в вырожденном газе
- •§ 118. Корреляция флуктуации во времени
- •§ 119. Временная корреляция флуктуации нескольких величин
- •§ 120. Симметрия кинетических коэффициентов
- •§ 121. Диссипативная функция
- •§ 122. Спектральное разложение флуктуации
- •§ 123. Обобщенная восприимчивость
- •§ 123] Обобщенная восприимчивость 411
- •§ 124. Флуктуационно-диссипационная теорема
- •§ 125. Флуктуационно-диссипационная теорема для нескольких величин
- •§ 126. Операторное выражение обобщенной восприимчивости
- •§ 127. Флуктуации изгиба длинных молекул
- •Глава XIII
- •§ 128. Элементы симметрии кристаллической решетки
- •§ 129. Решетка Бравэ
- •§ 130. Кристаллические системы
- •§ 131. Кристаллические классы
- •§ 132. Пространственные группы
- •§ 133. Обратная решетка
- •§ 134. Неприводимые представления пространственных групп
- •§ 135. Симметрия относительно обращения времени
- •§ 136. Свойства симметрии нормальных колебаний кристаллической решетки
- •§ 137. Структуры с одно- и двумерной периодичностью
- •§ 138. Корреляционная функция в двумерных системах
- •§ 139. Симметрия по ориентации молекул
- •§ 140. Нематические и холестерические жидкие кристаллы
- •§ 141. Флуктуации в жидких кристаллах
- •Глава XIV
- •§ 142. Фазовые переходы второго рода
- •§ 143. Скачок теплоемкости
- •§ 144. Влияние внешнего поля на фазовый переход
- •§ 145. Изменение симметрии при фазовом переходе второго рода
- •§ 146. Флуктуации параметра порядка
- •§ 147. Эффективный гамильтониан
- •§ 148. Критические индексы
- •§ 149. Масштабная инвариантность
- •§ 150. Изолированные и критические точки непрерывного перехода
- •§ 151. Фазовый переход второго рода в двумерной решетке
- •§ 153. Флуктуационная теория критической точки
- •Глава XV
- •§ 154. Поверхностное натяжение
- •§ 155. Поверхностное натяжение кристаллов
- •§ 156. Поверхностное давление
- •§ 157. Поверхностное натяжение растворов
- •§ 158. Поверхностное натяжение растворов сильных электролитов
- •§ 159. Адсорбция
- •§ 160. Смачивание
- •§ 161. Краевой угол
- •§ 162. Образование зародышей при фазовых переходах
- •§ 1Б2] образование зародышей при фазовых переходах 581
- •§ 163. Невозможность существования фаз в одномерных системах
§ 8. Закон возрастания энтропии
Если замкнутая система не находится в состоянии статистического равновесия, то с течением времени ее макроскопическое состояние будет изменяться, пока система в конце концов не придет в состояние полного равновесия. Характеризуя каждое макроскопическое состояние системы распределением энергии между различными подсистемами, мы можем сказать, что ряд последовательно проходимых системой состояний соответствует все более вероятному распре-
делению энергии. Это возрастание вероятности, вообще говоря, чрезвычайно велико в силу выясненного в предыдущем параграфе экспоненциального ее характера. Именно, мы видели, что вероятность определяется выражением es, в экспоненте которого стоит аддитивная величина—энтропия системы. Мы можем поэтому сказать, что процессы, протекающие в неравновесной замкнутой системе, идут таким образом, что система непрерывно переходит из состояний с меньшей в состояния с большей энтропией, пока, наконец, энтропия не достигнет наибольшего возможного значения, соответствующего полному статистическому равновесию.
Таким образом, если замкнутая система в некоторый момент времени находится в неравновесном макроскопическом состоянии, то наиболее вероятным следствием в последующие моменты времени будет монотонное возрастание энтропии системы. Это—так называемый закон возрастания энтропии или второй закон термодинамики. Он был открыт Клаузиусом (R. Clausius, 1865), а его статистическое обоснование было дано Больцманом (L. Boltz-тапп, 1870-е годы).
Говоря о «наиболее вероятном» следствии, надо иметь в виду, что в действительности вероятность перехода в состояния с большей энтропией настолько подавляюще велика по сравнению с вероятностью сколько-нибудь заметного ее уменьшения, что последнее вообще фактически никогда не может наблюдаться в природе. Отвлекаясь от уменьшений энтропии, связанных с совершенно ничтожными флуктуациями, мы можем поэтому сформулировать закон возрастания энтропии следующим образом: если в некоторый момент времени энтррпия замкнутой системы отлична от максимальной, то в последующие моменты энтропия не убывает — увеличивается или в предельном случае остается постоянной.
В том, что изложенные простые формулировки соответствуют реальной действительности, — нет никакого сомнения; они подтверждаются всеми нашими ежедневными наблюдениями. Однако при более внимательном рассмотрении вопроса о физической природе и происхождении этих закономерностей обнаруживаются существенные затруднения, в известной мере до настоящего времени еще не преодоленные.
Прежде всего, если мы попытаемся применить статистику к миру как целому, рассматриваемому как единая замкнутая система, то мы сразу же столкнемся с разительным противоречием между теорией и опытом. Согласно результатам статистики вселенная должна была бы находиться в состоянии полного статистического равновесия. Точнее, должна была бы находиться в равновесии любая сколь угодно большая, но конечная ее область, время релаксации которой во всяком случае конечно. Между тем ежедневный опыт убеждает нас в том, что свойства природы не имеют ничего общего со свойствами равновесной системы, а астрономические данные показывают, что то же самое относится и ко всей доступной нашему наблюдению колоссальной области Вселенной.
Выход из создающегося таким образом противоречия следует искать в общей теории относительности. Дело в том, что при рассмотрении большинства областей вселенной важную роль начинают играть существующие в них гравитационные поля. Как известно, последние представляют собой не что иное, как изменение пространственно-временной метрики. При изучении статистических свойств тел метрические свойства пространства-времени можно в известном смысле рассматривать как «внешние условия», в которых эти тела находятся. Но утверждение о том, что замкнутая система должна в течение достаточно длительного времени перейти в состояние равновесия, разумеется, относится лишь к системе, находящейся в стационарных внешних условиях. Между тем общее космологическое расширение вселенной означает, что ее метрика существенно зависит от времени, так что «внешние условия» отнюдь не являются в данном случае стационарными. При этом существенно, что гравитационное поле не может быть само включено в состав замкнутой системы ввиду того, что при этом обратились бы в тождество законы сохранения, являющиеся, как мы видели, основой статистики. Благодаря этому в общей теории относительности мир как целое должен рассматриваться не как замкнутая система, а как система, находящаяся в переменном гравитационном поле; в связи с этим применение закона возрастания энтропии не приводит к выводу о необходимости статистического равновесия.
Таким образом, в изложенной части вопроса о мире как целом ясны физические корни кажущихся противоречий. Существуют, однако, еще и другие трудности в понимании физической природы закона возрастания энтропии.
Как известно, классическая механика сама по себе полностью симметрична по отношению к обоим направлениям времени. Уравнения механики остаются неизменными при замене времени t на —t, поэтому, если эти уравнения допускают какое-либо движение, то они же допускают и прямо противоположное, при котором механическая система проходит через те же самые конфигурации в обратном порядке. Естественно, что такая симметрия должна сохраниться и в основанной на классической механике статистике. Поэтому, если возможен какой-либо процесс, сопровождающийся возрастанием энтропии замкнутой макроскопической системы, то должен быть возможен и обратный процесс, при котором энтропия системы убывает. Приведенная выше формулировка закона возрастания энтропии сама по себе еще не противоречит этой симметрии, так как в ней идет речь лишь о наиболее вероятном следствии макроскопически описанного состояния. Другими словами, если дано некоторое неравновесное макроскопическое состояние, то закон возрастания энтропии [утверждает лишь, что из всех микроскопических состояний, удовлетворяющих данному макроскопическому описанию, подавляющее большинство приведет в следующие моменты времени к возрастанию энтропии.
Противоречие возникает, однако, если обратить внимание на другую сторону этого вопроса. Формулируя закон возрастания энтропии, мы говорили о наиболее ве- i роятном следствии заданного в неко- £' торый момент времени макроскопиче- Smax v \,
ского состояния. Но это состояние само j /
должно было возникнуть из каких-то других состояний в результате проис- ходящих в природе процессов. Симмет- рия по отношению к обоим направле- ниям времени означает, что во всяком произвольно выбранном в некоторый Рис-
момент времени t = te макроскопическом состоянии замкнутой системы можно утверждать не только, что подавляюще вероятным его следствием при t > t0 будет увеличение энтропии, но и что подавляюще вероятно, что оно само возникло из состояний с большей энтропией; другими словами, подавляюще вероятно должно быть наличие минимума у энтропии как функции времени в момент t = t0, в который макроскопическое состояние выбирается нами произвольно1).
Но такое утверждение, разумеется, ни в какой степени не эквивалентно закону возрастания энтропии, согласно которому во всех реально осуществляющихся в природе замкнутых системах энтропия никогда не убывает (отвлекаясь от совершенно ничтожных флуктуации). Между тем именно эта общая формулировка закона возрастания энтропии полностью подтверждается всеми происходящими в природе явлениями. Подчеркнем, что она отнюдь не эквивалентна формулировке, данной в начале этого параграфа, как это могло бы показаться. Для того чтобы получить одну формулировку из другой, нужно было бы ввести понятие о наблюдателе, искусственно «изготовившем» в некоторый момент времени замкнутую систему, так, чтобы вопрос о ее предыдущем поведении вообще отпадал; такое связывание
х) Для лучшего уяснения этой симметрии изобразим схематически кривую изменения энтропии системы, замкнутой в течение громадного промежутка времени (рис. 1). Пусть в такой системе наблюдается макроскопическое состояние с энтропией S = St < Smax, возникшее в результате некоторой (крайне маловероятной) большой флуктуации. Тогда можно утверждать, что с подавляющей вероятностью это будет точка типа 1 (в которой энтропия уже достигла минимума), а не типа 2, за которой энтропия еще будет продолжать убывать.
физических законов со свойствами наблюдателя, разумеется, совершенно недопустимо.
Вряд ли сформулированный таким образом закон возрастания энтропии вообще-мог бы быть выведен на основе классической механики. К тому же, ввиду инвариантности уравнений классической механики по отношению к изменению знака времени, речь могла бы идти лишь о выводе монотонного изменения энтропии. Для того чтобы получить закон ее монотонного возрастания, мы должны были бы определить направление времени как то, в котором происходит возрастание энтропии. При этом возникла бы еще проблема доказательства тождественности такого термодинамического определения с квантовомеханическим {см. ниже).
В квантовой механике положение существенно меняется. Как известно, основное уравнение квантовой механики—уравнение Шредингера—само по себе симметрично по отношению к изме- нению знака времени (при условии одновременной замены, вол- новой функции Y на Это значит, что если в некоторый момент времени t = t1 волновая функция задана, ¥ = ¥(^), и, согласно уравнению Шредингера, в другой момент времени t = t2 она должна стать равной Witt), то переход от к W(tt)
обратим; другими словами, если в начальный момент t = tx было бы Y = 4f*</g), то в момент t = tt будет W — W'tfJ. Несмотря, однако, на эту симметрию, квантовая механика в действительности существенным образом содержит неэквивалентность обоих направлений времени. Эта неэквивалентность проявляется в связи с основным для квантовой механики процессом взаимодействия квантовомеханического объекта с системой, подчиняющейся с достаточной степенью точности классической механике. Именно, если с данным квантовым объектом последовательно происходят два процесса взаимодействия (назовем их Л и В), то утверждение, что вероятность того или иного результата процесса В определяется результатом процесса А, может быть справедливо лишь в том случае, если процесс А имел место раньше процесса В (см. также III, § 7),
Таким образом, в квантовой механике имеется физическая неэквивалентность обоих направлений времени, и в принципе закон возрастания энтропии мог бы быть ее макроскопическим выражением. В таком случае должно было бы существовать содержащее квантовую постоянную h неравенство, обеспечивающее справедливость этого закона и выполняющееся в реальном мире. Однако до настоящего времени никому не удалось сколько-нибудь убедительным образом проследить такую связь и показать, что она действительно имеет место.
Вопрос о физических основаниях закона монотонного возрастания энтропии остается, таким образом, открытым. Не имеет ли его происхождение космологической природы и не связано
ли оно с общей проблемой начальных условий в космологии? Играет ли, и какую роль, в этом вопросе нарушение временной симметрии в некоторых процессах слабых взаимодействий между элементарными частицами? Возможно, что на подобные вопросы будут получены ответы лишь в процессе дальнейшего синтеза физических теорий.
Резюмируя, еще раз повторим общую формулировку закона возрастания энтропии: во всех осуществляющихся в природе замкнутых системах энтропия никогда не убывает—она увеличивается или, в предельном случае, остается постоянной. Соответственно этим двум возможностям все происходящие с макроскопическими телами процессы принято делить на необратимые и обратимые. Под первыми подразумеваются процессы, сопровождающиеся возрастанием энтропии всей замкнутой системы; процессы, которые бы являлись их повторениями в обратном порядке, не могут происходить, так как при этом энтропия должна была бы уменьшиться. Обратимыми же называются процессы, при которых энтропия замкнутой системы остается постоянной1) и которые, следовательно, могут происходить и в обратном направлении. Строго обратимый процесс представляет собой, разумеется, идеальный предельный случай; реально происходящие в природе процессы могут быть обратимыми лишь с большей или меньшей степенью точности.
х) Подчеркнем, что энтропии отдельных частей системы при этом отнюдь не должны тоже оставаться постоянными.