
- •Часть 1
- •Глава I
- •§ 1. Статистическое распределение
- •§ 2. Статистическая независимость
- •§ 3. Теорема Лиувилля
- •§ 4. Роль энергии
- •§ 5. Статистическая матрица
- •§ 6. Статистическое распределение в квантовой статистике
- •§ 7. Энтропия
- •§ 8. Закон возрастания энтропии
- •Глава II
- •§ 9. Температура
- •§10. Макроскопическое движение
- •1) Производную по вектору надо понимать как вектор, составляющие которого равны производным по составляющим вектора, по которому произ- водится дифференцирование.
- •§11. Адиабатический процесс
- •§ 12. Давление
- •§ 13. Работа и количество тепла
- •§ 14. Тепловая функция
- •§ 15. Свободная энергия н термодинамический потенциал
- •§16. Соотношения между производными термодинамических
- •§ 16] Производные термодинамических величин
- •§ 17. Термодинамическая шкала температуры
- •§ 18. Процесс Джоуля — Томсона
- •§ 19. Максимальная работа
- •§ 20. Максимальная работа, производимая телом, находящимся во внешней среде
- •§ 20] Тело, находящееся во внешней среде 77
- •§ 21. Термодинамические неравенства
- •§ 22. Принцип Ле-Шателье
- •§ 23. Теорема Нернста
- •§ 24. Зависимость термодинамических величин от числа частиц
- •§ 25. Равновесие тела во внешнем поле
- •§ 26. Вращающиеся тела
- •§ 27. Термодинамические соотношения в релятивистской области
- •Глава III
- •§ 28. Распределение Гиббса
- •§ 29. Распределение Максвелла
- •§ 30. Распределение вероятностей для осциллятора
- •§ 31. Свободная энергия в распределении Гиббса
- •§ 32. Термодинамическая теория возмущений
- •§ 33. Разложение по степеням %
- •§ 34. Распределение Гиббса для вращающихся тел
- •§ 35. Распределение Гиббса с переменным числом частиц
- •§ 36. Вывод термодинамических соотношений из распределения Гиббса
- •Глава IV
- •§ 37. Распределение Больцмана
- •§ 38. Распределение Больцмана в классической статистике
- •§ 39. Столкновения молекул
- •§ 40. Неравновесный идеальный газ
- •§ 41. Свободная энергия больцмановского идеального газа
- •§ 42. Уравнение состояния идеального газа
- •§ 43. Идеальный газ с постоянной теплоемкостью
- •15. Определить максимальную работу, которую можно получить с по- мощью идеального газа при охлаждении от температуры т до температуры среды т0 при постоянном объеме.
- •§ 44. Закон равнораспределения
- •§ 43. Одноатомный идеальный газ
- •§ 46. Одноатомный газ. Влияние электронного момента
- •§ 47. Двухатомный газ с молекулами из различных атомов. Вращение молекул
- •§ 48. Двухатомный газ с молекулами из одинаковых атомов. Вращение молекул
- •§ 49. Двухатомный газ. Колебания атомов
- •§ 50. Двухатомный газ. Влияние электронного момента
- •§51] Многоатомный газ 169
- •§ 51. Многоатомный газ
- •§ 52. Магнетизм газов
- •Глава V
- •§ 53. Распределение Ферми
- •§ 54. Распределение Бозе
- •§ 55. Неравновесные ферми- и бозе-газы
- •§ 56. Ферми- и бозе-газы элементарных частиц
- •§ 56] Ферми- и бозе-газы элементарных частиц 185
- •§ 57. Вырожденный электронный газ
- •§ 58. Теплоемкость вырожденного электронного газа
- •§ 59. Магнетизм электронного газа. Слабые поля
- •§ 60. Магнетизм электронного газа. Сильные поля
- •§ 61. Релятивистский вырожденный электронный газ
- •§ 62. Вырожденный бозе-газ
- •§ 63. Черное излучение
- •Глава VI
- •§ 64. Твердые тела при низких температурах
- •§ 65. Твердые тела при высоких температурах
- •§ 66. Интерполяционная формула Дебая
- •§ 67. Тепловое расширение твердых тел
- •§ 68. Сильно анизотропные кристаллы
- •§ 69. Колебания кристаллической решетки
- •§ 70. Плотность числа колебаний
- •§ 71. Фононы.
- •§ 72. Операторы рождения и уничтожения фононов
- •§ 73. Отрицательные температуры
- •Глава VII
- •§ 74. Отклонение газов от идеальности
- •§ 75. Разложение по степеням плотности
- •§ 76. Формула ван-дер Ваальса
- •§ 77. Связь вириального коэффициента с амплитудой рассеяния
- •§ 78. Термодинамические величины классической плазмы
- •§ 79. Метод корреляционных функций
- •§ 80. Термодинамические величины вырожденной плазмы
- •1) В этом случае
- •Глава VIII
- •§ 81. Условия равновесия фаз
- •§ 82. Формула Клапейрона — Клаузиуса
- •§ 83. Критическая точка
- •§ 84. Закон соответственных состояний
- •Глава IX
- •§ 85. Системы с различными частицами
- •§ 86. Правило фаз
- •§ 87. Слабые растворы
- •§ 88. Осмотическое давление
- •§ 89. Соприкосновение фаз растворителя
- •§ 90. Равновесие по отношению к растворенному веществу
- •§ 91. Выделение тепла и изменение объема при растворении
- •§ 92. Растворы сильных электролитов
- •§ 93. Смесь идеальных газов
- •§ 94. Смесь изотопов
- •§ 95. Давление пара над концентрированным раствором
- •§ 96. Термодинамические неравенства в растворах
- •§ 97. Кривые равновесия
- •§ 98. Примеры диаграмм состояния
- •§ 99. Пересечение особых кривых поверхности равновесия
- •§ 100. Газ и жидкость
- •Глава X
- •§ 101. Условие химического равновесия
- •§ 102. Закон действующих масс
- •§ 103. Теплота реакции
- •§ 104. Ионизационное равновесие
- •§ 105. Равновесие по отношению к образованию пар
- •Глава XI
- •§ 106. Уравнение состояния вещества при больших плотностях
- •§ 107. Равновесие тел с большой массой
- •§ 108. Энергия гравитирующего тела
- •§ 109. Равновесие нейтронной сферы
- •Глава XII
- •§110. Распределение Гаусса
- •§ 110] Распределение гаусса 365
- •§ 111. Распределение Гаусса для нескольких величин
- •§ 113. Флуктуации в идеальном газе
- •§114. Формула Пуассона
- •§ 115. Флуктуации в растворах
- •§ 116. Пространственная корреляция флуктуации плотности
- •§ 117. Корреляция флуктуации плотности в вырожденном газе
- •§ 118. Корреляция флуктуации во времени
- •§ 119. Временная корреляция флуктуации нескольких величин
- •§ 120. Симметрия кинетических коэффициентов
- •§ 121. Диссипативная функция
- •§ 122. Спектральное разложение флуктуации
- •§ 123. Обобщенная восприимчивость
- •§ 123] Обобщенная восприимчивость 411
- •§ 124. Флуктуационно-диссипационная теорема
- •§ 125. Флуктуационно-диссипационная теорема для нескольких величин
- •§ 126. Операторное выражение обобщенной восприимчивости
- •§ 127. Флуктуации изгиба длинных молекул
- •Глава XIII
- •§ 128. Элементы симметрии кристаллической решетки
- •§ 129. Решетка Бравэ
- •§ 130. Кристаллические системы
- •§ 131. Кристаллические классы
- •§ 132. Пространственные группы
- •§ 133. Обратная решетка
- •§ 134. Неприводимые представления пространственных групп
- •§ 135. Симметрия относительно обращения времени
- •§ 136. Свойства симметрии нормальных колебаний кристаллической решетки
- •§ 137. Структуры с одно- и двумерной периодичностью
- •§ 138. Корреляционная функция в двумерных системах
- •§ 139. Симметрия по ориентации молекул
- •§ 140. Нематические и холестерические жидкие кристаллы
- •§ 141. Флуктуации в жидких кристаллах
- •Глава XIV
- •§ 142. Фазовые переходы второго рода
- •§ 143. Скачок теплоемкости
- •§ 144. Влияние внешнего поля на фазовый переход
- •§ 145. Изменение симметрии при фазовом переходе второго рода
- •§ 146. Флуктуации параметра порядка
- •§ 147. Эффективный гамильтониан
- •§ 148. Критические индексы
- •§ 149. Масштабная инвариантность
- •§ 150. Изолированные и критические точки непрерывного перехода
- •§ 151. Фазовый переход второго рода в двумерной решетке
- •§ 153. Флуктуационная теория критической точки
- •Глава XV
- •§ 154. Поверхностное натяжение
- •§ 155. Поверхностное натяжение кристаллов
- •§ 156. Поверхностное давление
- •§ 157. Поверхностное натяжение растворов
- •§ 158. Поверхностное натяжение растворов сильных электролитов
- •§ 159. Адсорбция
- •§ 160. Смачивание
- •§ 161. Краевой угол
- •§ 162. Образование зародышей при фазовых переходах
- •§ 1Б2] образование зародышей при фазовых переходах 581
- •§ 163. Невозможность существования фаз в одномерных системах
§ 93. Смесь идеальных газов
Аддитивность термодинамических величин (таких, как энергия, энтропия и т. п.) имеет место лишь постольку, поскольку можно пренебречь взаимодействием отдельных частей тела. Поэтому для смеси нескольких веществ — например смеси нескольких жидкостей — термодинамические величины не будут равны суммам термодинамических величин отдельных компонент смеси.
Исключение представляет смесь идеальных газов, так как взаимодействием их молекул можно по определению пренебречь. Энтропия, например, такой смеси равна сумме энтропии каждого из входящих в состав смеси газов, как если бы других газов не было, а каждый из газов имел бы объем, равный объему всей смеси, и, следовательно, давление, равное парциальному давлению данного газа в смеси. Парциальное давление i-ro газа Р{ выражается через .давление Р всей смеси следующим образом:
где N — полное число молекул в смеси, a N{—число молекул i-ro газа. Поэтому согласно (42,7) энтропия смеси двух газов равна
S = N1\n%- + N2 In ^-NJi (T)-NJ', (T), (93,2)
или, согласно (42,8),
S = - JVt In Р, - N2 In Р2 - N1%[( Т) - Ni%2(T) =
^-(N^N^lnP-NAn^—NJn^—N^m-N^iT).
(93,3)
Свободная энергия смеси равна, согласно (42,4),
F = — N1T ln-^-—N2T In ^щЛ-NJ,(T) + NJ2 (Г). (93,4)
Аналогично для потенциала Ф находим с помощью (42,6) Ф = NJ In Рг + N2T In Р2 + NlXl (Т) + N2%2 (Т) =
= N,(Т In Р + Xl) + N2 (ТIn Р +Ъ) + N,T In 4- + N2T In .
(93,5)
Из этого выражения видно, что химические потенциалы обоих газов в смеси:
рх = ТInP1 + Xl = ТШР +Ъ + ТIn4" ,
VLt = T\nPt+%t = TlnP + %t + Tln^- ,
т. е. каждый из них имеет такой же вид, какой имел бы химический потенциал чистого газа с давлением Рх или Р2.
Отметим, что свободная энергия смеси газов (93,4) имеет вид
F = F1(NU V, Т) + F2(N2,V, Т),
где Flt F2—свободные энергии первого и второго газов как функции числа частиц, объема и температуры; для термодинамического же потенциала аналогичное равенство не справедливо—потенциал Ф смеси имеет вид
Ф = Фг (Nlt Р,Т)+Ф2 (.ЛГ2, Р, Т) + NJ In -^L + N2T In .
Предположим, что мы имеем два различных газа с числами частиц iVj и N2, находящихся в сосудах с объемами Vx и V2, с одинаковыми температурами и одинаковыми давлениями. Затем оба сосуда соединяются и газы смешиваются, причем объем смеси делается равным Vj + Vsj, а давление и температура остаются, очевидно, прежними. Энтропия, однако, при этом меняется; действительно, до смешения энтропия обоих газов, равная сумме их энтропии, была
So = N, Inе^ + Ns In ^ - NJi (Т) - ВД (Т).
После смешения энтропия согласна (93,2) есть
5 = Nx In (Vt + Vt) + N2\n-^- (V, + V2) - Njl - ВД. Изменение энтропии
'1 У 2
или, поскольку при одинаковых давлениях и температурах объемы пропорциональны числу частиц:
AS = NAn-^- + N2ln~. (93,7)
Эта величина положительна, т. е. энтропия при смешении увеличивается, как и должно было быть ввиду очевидной необратимости процесса. Величину AS называют энтропией смешения.
Если бы оба газа были одинаковы, то энтропия после соединения сосудов была бы
S = (Nl + Ni) In I^-iN, + N,)f.
v,
+
v2
vt
v2
.
и
поскольку N
^N
~W~=~Fr(B
СИЛУ
Равенства
давлении и температур), изменение
энтропии было бы равно нулю.
Таким образом, изменение энтропии при смешении связано именно с различием молекул смешиваемых газов. Это соответствует тому, что необходимо затратить некоторую работу, для того чтобы отделить обратно молекулы одного газа от молекул другого.