
- •Часть 1
- •Глава I
- •§ 1. Статистическое распределение
- •§ 2. Статистическая независимость
- •§ 3. Теорема Лиувилля
- •§ 4. Роль энергии
- •§ 5. Статистическая матрица
- •§ 6. Статистическое распределение в квантовой статистике
- •§ 7. Энтропия
- •§ 8. Закон возрастания энтропии
- •Глава II
- •§ 9. Температура
- •§10. Макроскопическое движение
- •1) Производную по вектору надо понимать как вектор, составляющие которого равны производным по составляющим вектора, по которому произ- водится дифференцирование.
- •§11. Адиабатический процесс
- •§ 12. Давление
- •§ 13. Работа и количество тепла
- •§ 14. Тепловая функция
- •§ 15. Свободная энергия н термодинамический потенциал
- •§16. Соотношения между производными термодинамических
- •§ 16] Производные термодинамических величин
- •§ 17. Термодинамическая шкала температуры
- •§ 18. Процесс Джоуля — Томсона
- •§ 19. Максимальная работа
- •§ 20. Максимальная работа, производимая телом, находящимся во внешней среде
- •§ 20] Тело, находящееся во внешней среде 77
- •§ 21. Термодинамические неравенства
- •§ 22. Принцип Ле-Шателье
- •§ 23. Теорема Нернста
- •§ 24. Зависимость термодинамических величин от числа частиц
- •§ 25. Равновесие тела во внешнем поле
- •§ 26. Вращающиеся тела
- •§ 27. Термодинамические соотношения в релятивистской области
- •Глава III
- •§ 28. Распределение Гиббса
- •§ 29. Распределение Максвелла
- •§ 30. Распределение вероятностей для осциллятора
- •§ 31. Свободная энергия в распределении Гиббса
- •§ 32. Термодинамическая теория возмущений
- •§ 33. Разложение по степеням %
- •§ 34. Распределение Гиббса для вращающихся тел
- •§ 35. Распределение Гиббса с переменным числом частиц
- •§ 36. Вывод термодинамических соотношений из распределения Гиббса
- •Глава IV
- •§ 37. Распределение Больцмана
- •§ 38. Распределение Больцмана в классической статистике
- •§ 39. Столкновения молекул
- •§ 40. Неравновесный идеальный газ
- •§ 41. Свободная энергия больцмановского идеального газа
- •§ 42. Уравнение состояния идеального газа
- •§ 43. Идеальный газ с постоянной теплоемкостью
- •15. Определить максимальную работу, которую можно получить с по- мощью идеального газа при охлаждении от температуры т до температуры среды т0 при постоянном объеме.
- •§ 44. Закон равнораспределения
- •§ 43. Одноатомный идеальный газ
- •§ 46. Одноатомный газ. Влияние электронного момента
- •§ 47. Двухатомный газ с молекулами из различных атомов. Вращение молекул
- •§ 48. Двухатомный газ с молекулами из одинаковых атомов. Вращение молекул
- •§ 49. Двухатомный газ. Колебания атомов
- •§ 50. Двухатомный газ. Влияние электронного момента
- •§51] Многоатомный газ 169
- •§ 51. Многоатомный газ
- •§ 52. Магнетизм газов
- •Глава V
- •§ 53. Распределение Ферми
- •§ 54. Распределение Бозе
- •§ 55. Неравновесные ферми- и бозе-газы
- •§ 56. Ферми- и бозе-газы элементарных частиц
- •§ 56] Ферми- и бозе-газы элементарных частиц 185
- •§ 57. Вырожденный электронный газ
- •§ 58. Теплоемкость вырожденного электронного газа
- •§ 59. Магнетизм электронного газа. Слабые поля
- •§ 60. Магнетизм электронного газа. Сильные поля
- •§ 61. Релятивистский вырожденный электронный газ
- •§ 62. Вырожденный бозе-газ
- •§ 63. Черное излучение
- •Глава VI
- •§ 64. Твердые тела при низких температурах
- •§ 65. Твердые тела при высоких температурах
- •§ 66. Интерполяционная формула Дебая
- •§ 67. Тепловое расширение твердых тел
- •§ 68. Сильно анизотропные кристаллы
- •§ 69. Колебания кристаллической решетки
- •§ 70. Плотность числа колебаний
- •§ 71. Фононы.
- •§ 72. Операторы рождения и уничтожения фононов
- •§ 73. Отрицательные температуры
- •Глава VII
- •§ 74. Отклонение газов от идеальности
- •§ 75. Разложение по степеням плотности
- •§ 76. Формула ван-дер Ваальса
- •§ 77. Связь вириального коэффициента с амплитудой рассеяния
- •§ 78. Термодинамические величины классической плазмы
- •§ 79. Метод корреляционных функций
- •§ 80. Термодинамические величины вырожденной плазмы
- •1) В этом случае
- •Глава VIII
- •§ 81. Условия равновесия фаз
- •§ 82. Формула Клапейрона — Клаузиуса
- •§ 83. Критическая точка
- •§ 84. Закон соответственных состояний
- •Глава IX
- •§ 85. Системы с различными частицами
- •§ 86. Правило фаз
- •§ 87. Слабые растворы
- •§ 88. Осмотическое давление
- •§ 89. Соприкосновение фаз растворителя
- •§ 90. Равновесие по отношению к растворенному веществу
- •§ 91. Выделение тепла и изменение объема при растворении
- •§ 92. Растворы сильных электролитов
- •§ 93. Смесь идеальных газов
- •§ 94. Смесь изотопов
- •§ 95. Давление пара над концентрированным раствором
- •§ 96. Термодинамические неравенства в растворах
- •§ 97. Кривые равновесия
- •§ 98. Примеры диаграмм состояния
- •§ 99. Пересечение особых кривых поверхности равновесия
- •§ 100. Газ и жидкость
- •Глава X
- •§ 101. Условие химического равновесия
- •§ 102. Закон действующих масс
- •§ 103. Теплота реакции
- •§ 104. Ионизационное равновесие
- •§ 105. Равновесие по отношению к образованию пар
- •Глава XI
- •§ 106. Уравнение состояния вещества при больших плотностях
- •§ 107. Равновесие тел с большой массой
- •§ 108. Энергия гравитирующего тела
- •§ 109. Равновесие нейтронной сферы
- •Глава XII
- •§110. Распределение Гаусса
- •§ 110] Распределение гаусса 365
- •§ 111. Распределение Гаусса для нескольких величин
- •§ 113. Флуктуации в идеальном газе
- •§114. Формула Пуассона
- •§ 115. Флуктуации в растворах
- •§ 116. Пространственная корреляция флуктуации плотности
- •§ 117. Корреляция флуктуации плотности в вырожденном газе
- •§ 118. Корреляция флуктуации во времени
- •§ 119. Временная корреляция флуктуации нескольких величин
- •§ 120. Симметрия кинетических коэффициентов
- •§ 121. Диссипативная функция
- •§ 122. Спектральное разложение флуктуации
- •§ 123. Обобщенная восприимчивость
- •§ 123] Обобщенная восприимчивость 411
- •§ 124. Флуктуационно-диссипационная теорема
- •§ 125. Флуктуационно-диссипационная теорема для нескольких величин
- •§ 126. Операторное выражение обобщенной восприимчивости
- •§ 127. Флуктуации изгиба длинных молекул
- •Глава XIII
- •§ 128. Элементы симметрии кристаллической решетки
- •§ 129. Решетка Бравэ
- •§ 130. Кристаллические системы
- •§ 131. Кристаллические классы
- •§ 132. Пространственные группы
- •§ 133. Обратная решетка
- •§ 134. Неприводимые представления пространственных групп
- •§ 135. Симметрия относительно обращения времени
- •§ 136. Свойства симметрии нормальных колебаний кристаллической решетки
- •§ 137. Структуры с одно- и двумерной периодичностью
- •§ 138. Корреляционная функция в двумерных системах
- •§ 139. Симметрия по ориентации молекул
- •§ 140. Нематические и холестерические жидкие кристаллы
- •§ 141. Флуктуации в жидких кристаллах
- •Глава XIV
- •§ 142. Фазовые переходы второго рода
- •§ 143. Скачок теплоемкости
- •§ 144. Влияние внешнего поля на фазовый переход
- •§ 145. Изменение симметрии при фазовом переходе второго рода
- •§ 146. Флуктуации параметра порядка
- •§ 147. Эффективный гамильтониан
- •§ 148. Критические индексы
- •§ 149. Масштабная инвариантность
- •§ 150. Изолированные и критические точки непрерывного перехода
- •§ 151. Фазовый переход второго рода в двумерной решетке
- •§ 153. Флуктуационная теория критической точки
- •Глава XV
- •§ 154. Поверхностное натяжение
- •§ 155. Поверхностное натяжение кристаллов
- •§ 156. Поверхностное давление
- •§ 157. Поверхностное натяжение растворов
- •§ 158. Поверхностное натяжение растворов сильных электролитов
- •§ 159. Адсорбция
- •§ 160. Смачивание
- •§ 161. Краевой угол
- •§ 162. Образование зародышей при фазовых переходах
- •§ 1Б2] образование зародышей при фазовых переходах 581
- •§ 163. Невозможность существования фаз в одномерных системах
§ 92. Растворы сильных электролитов
Метод разложения термодинамических величин по степеням концентрации, использованный в предыдущих параграфах, совершенно непригоден в важном случае растворов сильных электролитов, т. е. веществ, которые при растворении почти нацело диссоциируют на ионы. Медленное убывание кулоновских сил взаимодействия между ионами с увеличением расстояния приводит к появлению членов, пропорциональных концентрации в степени более низкой, чем вторая (фактически—степени 3/2).
Легко видеть, что задача об определении термодинамических величин слабого раствора сильного электролита сводится к рассмотренной в § 78 задаче о полностью ионизованном газе (P. Debye, Е. Hiickel, 1923). В этом можно убедиться, отправляясь от основной статистической формулы для свободной энергии (31,5). Будем производить интегрирование в статистическом интеграле в два этапа. Сначала проинтегрируем по координатам и импульсам молекул растворителя. Тогда статистический интеграл примет вид
где интегрирование распространяется теперь только по фазовому пространству частиц электролита, a F (р, q) есть свободная энергия растворителя с «вставленными» в него ионами, координаты и импульсы которых играют роль параметров. Как известно из электродинамики, свободная энергия системы зарядов в среде (при заданных объеме и температуре последней) получается из энергии зарядов в пустом пространстве делением произведений каждых двух зарядов на диэлектрическую постоянную среды е1). Поэтому второй этап вычисления свободной энергии раствора совпадает с вычислениями, произведенными в § 78.
Таким образом, искомый вклад сильного электролита в свободную энергию раствора дается, согласно (78,12), выражением
где суммирование производится по всем сортам ионов в растворе; в соответствии с обозначениями в этой главе посредством па обозначается полное число ионов сорта а (во всем объеме раствора). Этим же выражением определяется вклад в термодинамический потенциал, рассматриваемый при заданных температуре и давлении. Вводя молекулярный объем растворителя v(P, Т) посредством V« Nv, напишем термодинамический потенциал раствора в виде
ф.^+х („.г +м,) (£ г * (
1)
Это утверждение подразумевает, что
расстояния между ионами велики по
сравнению с молекулярными размерами.
Но мы знаем из § 78, что в рассматриваемом
приближении основной вклад в
термодинамические величины происходит
именно с этих расстояний.
По обычным правилам отсюда можно найти любые термодинамические свойства раствора электролита.
Так, для вычисления осмотического давления пишем химический потенциал растворителя:
Подобно тому, как это было сделано в § 88, находим отсюда осмотическое давление (на границе с чистым растворителем):
A^=TL^—^m{t} ' (92>3)
Тепловая функция раствора: д Ф'
W Т2\дТТ Jp
(92,4)
Отсюда можно найти теплоту растворения Q, выделяющуюся при разведении раствора (при постоянных Р и Т) очень большим количеством растворителя (так что концентрация стремится к нулю). Это количество тепла дается изменением тепловой функции при процессе. Линейные по числу частиц члены, очевидно, выпадают из соответствующей разности, и мы находим из (92,4)
Единственное условие применимости полученных формул состоит в требовании достаточной малости концентрации. Действительно, тот факт, что электролит является сильным, означает, что энергия притяжения между ионами различного сорта всегда меньше Т. Отсюда следует, что энергия взаимодействия будет во всяком случае мала по сравнению с Г на расстояниях, больших по сравнению с молекулярными. Между тем условие слабости раствора (n<^.N) означает именно, что среднее расстояние между ионами велико по сравнению с молекулярными размерами. Поэтому из этого условия автоматически следует соблюдение условия слабости взаимодействия, выражаемого неравенством
(ср. (78,2)) и лежащего в основе принятых в § 78 приближений.
Задача
Найти изменение растворимости сильного электролита (которая предполагается малой) при добавлении в раствор определенного количества другого электролита (причем все ионы последнего отличны от ионов основного электролита).
Решение. Растворимость (т. е. концентрация насыщенного раствора) сильного электролита определяется уравнением
Здесь u,TB—химический потенциал чистого твердого электролита, a va—число ионов сорта а в одной молекуле электролита. При добавлении к раствору посторонних ионов химические потенциалы собственных ионов изменятся благодаря изменению суммы 2n6zl>> в К0Т0РУЮ должны быть включены все присутствующие в растворе ионы. Определив растворимость с0 посредством naIN = = vac0, мы найдем ее изменение путем варьирования выражения (1) при заданных Р и Т:
Сумма под знаком вариации включает в себя только ионы добавленных сортов-Обратим внимание на то, что в рассмотренных условиях растворимость повышается.