
- •Часть 1
- •Глава I
- •§ 1. Статистическое распределение
- •§ 2. Статистическая независимость
- •§ 3. Теорема Лиувилля
- •§ 4. Роль энергии
- •§ 5. Статистическая матрица
- •§ 6. Статистическое распределение в квантовой статистике
- •§ 7. Энтропия
- •§ 8. Закон возрастания энтропии
- •Глава II
- •§ 9. Температура
- •§10. Макроскопическое движение
- •1) Производную по вектору надо понимать как вектор, составляющие которого равны производным по составляющим вектора, по которому произ- водится дифференцирование.
- •§11. Адиабатический процесс
- •§ 12. Давление
- •§ 13. Работа и количество тепла
- •§ 14. Тепловая функция
- •§ 15. Свободная энергия н термодинамический потенциал
- •§16. Соотношения между производными термодинамических
- •§ 16] Производные термодинамических величин
- •§ 17. Термодинамическая шкала температуры
- •§ 18. Процесс Джоуля — Томсона
- •§ 19. Максимальная работа
- •§ 20. Максимальная работа, производимая телом, находящимся во внешней среде
- •§ 20] Тело, находящееся во внешней среде 77
- •§ 21. Термодинамические неравенства
- •§ 22. Принцип Ле-Шателье
- •§ 23. Теорема Нернста
- •§ 24. Зависимость термодинамических величин от числа частиц
- •§ 25. Равновесие тела во внешнем поле
- •§ 26. Вращающиеся тела
- •§ 27. Термодинамические соотношения в релятивистской области
- •Глава III
- •§ 28. Распределение Гиббса
- •§ 29. Распределение Максвелла
- •§ 30. Распределение вероятностей для осциллятора
- •§ 31. Свободная энергия в распределении Гиббса
- •§ 32. Термодинамическая теория возмущений
- •§ 33. Разложение по степеням %
- •§ 34. Распределение Гиббса для вращающихся тел
- •§ 35. Распределение Гиббса с переменным числом частиц
- •§ 36. Вывод термодинамических соотношений из распределения Гиббса
- •Глава IV
- •§ 37. Распределение Больцмана
- •§ 38. Распределение Больцмана в классической статистике
- •§ 39. Столкновения молекул
- •§ 40. Неравновесный идеальный газ
- •§ 41. Свободная энергия больцмановского идеального газа
- •§ 42. Уравнение состояния идеального газа
- •§ 43. Идеальный газ с постоянной теплоемкостью
- •15. Определить максимальную работу, которую можно получить с по- мощью идеального газа при охлаждении от температуры т до температуры среды т0 при постоянном объеме.
- •§ 44. Закон равнораспределения
- •§ 43. Одноатомный идеальный газ
- •§ 46. Одноатомный газ. Влияние электронного момента
- •§ 47. Двухатомный газ с молекулами из различных атомов. Вращение молекул
- •§ 48. Двухатомный газ с молекулами из одинаковых атомов. Вращение молекул
- •§ 49. Двухатомный газ. Колебания атомов
- •§ 50. Двухатомный газ. Влияние электронного момента
- •§51] Многоатомный газ 169
- •§ 51. Многоатомный газ
- •§ 52. Магнетизм газов
- •Глава V
- •§ 53. Распределение Ферми
- •§ 54. Распределение Бозе
- •§ 55. Неравновесные ферми- и бозе-газы
- •§ 56. Ферми- и бозе-газы элементарных частиц
- •§ 56] Ферми- и бозе-газы элементарных частиц 185
- •§ 57. Вырожденный электронный газ
- •§ 58. Теплоемкость вырожденного электронного газа
- •§ 59. Магнетизм электронного газа. Слабые поля
- •§ 60. Магнетизм электронного газа. Сильные поля
- •§ 61. Релятивистский вырожденный электронный газ
- •§ 62. Вырожденный бозе-газ
- •§ 63. Черное излучение
- •Глава VI
- •§ 64. Твердые тела при низких температурах
- •§ 65. Твердые тела при высоких температурах
- •§ 66. Интерполяционная формула Дебая
- •§ 67. Тепловое расширение твердых тел
- •§ 68. Сильно анизотропные кристаллы
- •§ 69. Колебания кристаллической решетки
- •§ 70. Плотность числа колебаний
- •§ 71. Фононы.
- •§ 72. Операторы рождения и уничтожения фононов
- •§ 73. Отрицательные температуры
- •Глава VII
- •§ 74. Отклонение газов от идеальности
- •§ 75. Разложение по степеням плотности
- •§ 76. Формула ван-дер Ваальса
- •§ 77. Связь вириального коэффициента с амплитудой рассеяния
- •§ 78. Термодинамические величины классической плазмы
- •§ 79. Метод корреляционных функций
- •§ 80. Термодинамические величины вырожденной плазмы
- •1) В этом случае
- •Глава VIII
- •§ 81. Условия равновесия фаз
- •§ 82. Формула Клапейрона — Клаузиуса
- •§ 83. Критическая точка
- •§ 84. Закон соответственных состояний
- •Глава IX
- •§ 85. Системы с различными частицами
- •§ 86. Правило фаз
- •§ 87. Слабые растворы
- •§ 88. Осмотическое давление
- •§ 89. Соприкосновение фаз растворителя
- •§ 90. Равновесие по отношению к растворенному веществу
- •§ 91. Выделение тепла и изменение объема при растворении
- •§ 92. Растворы сильных электролитов
- •§ 93. Смесь идеальных газов
- •§ 94. Смесь изотопов
- •§ 95. Давление пара над концентрированным раствором
- •§ 96. Термодинамические неравенства в растворах
- •§ 97. Кривые равновесия
- •§ 98. Примеры диаграмм состояния
- •§ 99. Пересечение особых кривых поверхности равновесия
- •§ 100. Газ и жидкость
- •Глава X
- •§ 101. Условие химического равновесия
- •§ 102. Закон действующих масс
- •§ 103. Теплота реакции
- •§ 104. Ионизационное равновесие
- •§ 105. Равновесие по отношению к образованию пар
- •Глава XI
- •§ 106. Уравнение состояния вещества при больших плотностях
- •§ 107. Равновесие тел с большой массой
- •§ 108. Энергия гравитирующего тела
- •§ 109. Равновесие нейтронной сферы
- •Глава XII
- •§110. Распределение Гаусса
- •§ 110] Распределение гаусса 365
- •§ 111. Распределение Гаусса для нескольких величин
- •§ 113. Флуктуации в идеальном газе
- •§114. Формула Пуассона
- •§ 115. Флуктуации в растворах
- •§ 116. Пространственная корреляция флуктуации плотности
- •§ 117. Корреляция флуктуации плотности в вырожденном газе
- •§ 118. Корреляция флуктуации во времени
- •§ 119. Временная корреляция флуктуации нескольких величин
- •§ 120. Симметрия кинетических коэффициентов
- •§ 121. Диссипативная функция
- •§ 122. Спектральное разложение флуктуации
- •§ 123. Обобщенная восприимчивость
- •§ 123] Обобщенная восприимчивость 411
- •§ 124. Флуктуационно-диссипационная теорема
- •§ 125. Флуктуационно-диссипационная теорема для нескольких величин
- •§ 126. Операторное выражение обобщенной восприимчивости
- •§ 127. Флуктуации изгиба длинных молекул
- •Глава XIII
- •§ 128. Элементы симметрии кристаллической решетки
- •§ 129. Решетка Бравэ
- •§ 130. Кристаллические системы
- •§ 131. Кристаллические классы
- •§ 132. Пространственные группы
- •§ 133. Обратная решетка
- •§ 134. Неприводимые представления пространственных групп
- •§ 135. Симметрия относительно обращения времени
- •§ 136. Свойства симметрии нормальных колебаний кристаллической решетки
- •§ 137. Структуры с одно- и двумерной периодичностью
- •§ 138. Корреляционная функция в двумерных системах
- •§ 139. Симметрия по ориентации молекул
- •§ 140. Нематические и холестерические жидкие кристаллы
- •§ 141. Флуктуации в жидких кристаллах
- •Глава XIV
- •§ 142. Фазовые переходы второго рода
- •§ 143. Скачок теплоемкости
- •§ 144. Влияние внешнего поля на фазовый переход
- •§ 145. Изменение симметрии при фазовом переходе второго рода
- •§ 146. Флуктуации параметра порядка
- •§ 147. Эффективный гамильтониан
- •§ 148. Критические индексы
- •§ 149. Масштабная инвариантность
- •§ 150. Изолированные и критические точки непрерывного перехода
- •§ 151. Фазовый переход второго рода в двумерной решетке
- •§ 153. Флуктуационная теория критической точки
- •Глава XV
- •§ 154. Поверхностное натяжение
- •§ 155. Поверхностное натяжение кристаллов
- •§ 156. Поверхностное давление
- •§ 157. Поверхностное натяжение растворов
- •§ 158. Поверхностное натяжение растворов сильных электролитов
- •§ 159. Адсорбция
- •§ 160. Смачивание
- •§ 161. Краевой угол
- •§ 162. Образование зародышей при фазовых переходах
- •§ 1Б2] образование зародышей при фазовых переходах 581
- •§ 163. Невозможность существования фаз в одномерных системах
§ 88. Осмотическое давление
В этом и в следующих параграфах мы рассмотрим некоторые свойства растворов, причем по-прежнему будем считать раствор слабым и потому будем пользоваться формулами предыдущего параграфа.
Предположим, что два раствора одного и того же вещества в одном и том же растворителе, но обладающие различными концентрациями сх и с2, отделены друг от друга перегородкой, сквозь которую могут проникать молекулы растворителя, но не растворенного вещества (полупроницаемая перегородка). Давления с обеих сторон перегородки будут при этом различными (рассуждения в § 12 о равенстве давлений здесь неприменимы благодаря наличию полупроницаемой перегородки). Разность этих давлений носит название осмотического давления.
Условием равновесия между обоими растворами будет (кроме равенства их температур) равенство химических потенциалов растворителя в них. Химические потенциалы растворенного вещества при этом не должны быть одинаковы, так как вследствие полупроницаемости перегородки равновесие имеет место только по отношению к растворителю.
Обозначая давления в обоих растворах буквами Рг и Р2 и воспользовавшись выражением (87,4), получим условие равновесия в виде
|i.(Plt Т)-с1Г = р0(Яа, Т)-с2Т. (88,1)
Разность давлений Р2— Pt=AP (т. е. осмотическое давление) для слабых растворов относительно мала. Поэтому можно разложить р0(Р2> Т) в ряд по степеням АР и оставить только два первых члена:
р0(Р2, Т) = М/\, Т)+АРд$.
Подставляя это в (88,1), находим
bPd$ = (c,-cJT.
Но производная Зр0/ЗР есть молекулярный объем v чистого растворителя. Таким образом,
AP = (c2-Cl)|. (88,2)
В частности, если с одной стороны перегородки находится чистый растворитель (^ = 0, с2 = с), то осмотическое давление
сТ пТ
где п есть число молекул растворенного вещества в объеме V растворителя (ввиду слабости раствора V с большой точностью равно полному объему раствора). Формулу (88,3) называют формулой Вант-Гоффа. Следует обратить внимание на то, что она применима к слабым растворам независимо от конкретного рода веществ (как растворителя, так и растворенного вещества), а также на сходство этой формулы с уравнением состояния идеального газа. Вместо давления газа здесь стоит осмотическое давление, вместо объема газа — объем раствора и вместо количества частиц в газе—количество молекул растворенного вещества.
§ 89. Соприкосновение фаз растворителя
Рассмотрим равновесие двух соприкасающихся фаз растворителя, в каждой из которых растворено некоторое количество одного и того же вещества. Условиями равновесия являются (кроме равенства давлений и температур) равенства химических потенциалов растворителя и растворенного вещества в обеих фазах. Мы воспользуемся здесь первым из них и напишем его в виде
p.J(P, T)-ClT = p0I(P, Т)-СцТ, (89,1)
где С\ и Сц—концентрации, а р0 и р"—химические потенциалы обеих фаз чистого растворителя.
Надо заметить, что рассматриваемая нами теперь система, состоящая из двух компонент и имеющая две фазы, обладает двумя термодинамическими степенями свободы. Поэтому из четырех величин Р, Т, Ci, Сц только две можно выбрать произвольно; если мы выберем, например, Р или Т и одну из концентраций, то другая концентрация будет при этом определена.
Если бы обе фазы растворителя не содержали растворенного вещества, то условием их равновесия было бы
pi (Р0, Та) = р." (Ра, Тц) (89,2)
(температуру и давление обеих фаз мы при этом обозначили через Т0 и Р0)."
Таким образом, в то время как при равновесии фаз чистого растворителя зависимость между давлением и температурой определяется уравнением (89,2), после растворения в этих фазах какого-либо вещества та же зависимость определяется уравнением (89,1). Для слабых растворов обе эти кривые близки друг к другу.
Разложим теперь в равенстве (89,1) \il(P, Т) и р" (Р, Т) по степеням Р—Р0 = АР и Т — 70 = А7, где Р0 и Т9—давление и температура в некоторой точке на кривой равновесия фаз чистого растворителя, близкой к данной точке Р, Т на кривой равновесия фаз раствора. Оставляя в разложении только члены первого порядка относительно ДР и ДТ и принимая во внимание (89,2), получим из (89,1)
|? ДТ + ^ АР-схТ = дт + АР—спТ.
Но —фо/дТ и d\i0/dP не что иное, как энтропия s и объем v чистого растворителя (отнесенные к одной молекуле). Приписывая им также индекс, указывающий фазу, находим
- (s,-s„) AT + (о, - »„) ДР = (с,- с„) Т. (89,3)
Согласно формуле (81,5) имеем: (sn — si)T = q, где ^—теплота перехода растворителя из первой фазы во вторую. Поэтому (89,3) можно переписать также и в виде
f ДТ + (о,-г;11)АР = (с1-с„)Т. (89,4)
Разберем два частных случая этой формулы. Выберем сначала точку Р„, Т0 так, чтобы Р0 = Р. Тогда ДТ будет расстоянием по оси абсцисс между обеими кривыми при одной и той же ординате. Другими словами, ДТ будет представлять собой изменение температуры перехода между двумя фазами при растворении, т. е. разность между температурой Т этого перехода (при давлении Р), когда обе фазы являются растворами, и температурой Т0 перехода (при том же давлении) для чистого растворителя. Так как при этом ДР = 0, то из (89,4) получим
АТ
= Г2(С1~С|1)
. (89,5)
Я
Если одна из фаз (скажем, первая) является чистым растворителем (с„ = 0, Cj = C), то
АТ = ^. (89,6)
Эта формула определяет, в частности, изменение температуры замерзания при растворении, если растворенное вещество нерастворимо в твердой фазе; двумя фазами являются при этом жидкий раствор и твердый растворитель, а ДТ есть разность между температурой вымерзания растворителя из раствора и температурой замерзания чистого растворителя. При замерзании тепло выделяется, т. е. q отрицательно. Поэтому и AT < О, т. е. если вымерзает чистый растворитель, то растворение понижает температуру замерзания.
Соотношение (89,6) определяет также изменение температуры кипения при растворении, если растворенное вещество не летуче: двумя фазами являются при этом жидкий раствор и пар растворителя. ДТ есть теперь разность температуры выкипания раства-
рителя из раствора и температуры кипения чистого растворителя. Поскольку при кипении теплота поглощается, то q > 0, а потому и ДТ > О, т. е. температура кипения при растворении повышается.
Все эти следствия из формулы (89,6) находятся в полном согласии с принципом Ле-Шателье. Пусть, например, жидкий раствор находится в равновесии с твердым растворителем. Если увеличить концентрацию раствора, то, согласно принципу Ле-Шателье, должна понизиться температура замерзания так, чтобы часть твердого растворителя перешла в раствор и концентрация понизилась. Система как бы противодействует выведению ее из состояния равновесия. Аналогично, если увеличить концентрацию Жидкого раствора, находящегося в равновесии с паром растворителя, то температура кипения должна повыситься так, чтобы часть пара сконденсировалась в раствор и концентрация понизилась.
Рассмотрим теперь другой частный случай формулы (89,4), выбрав точку Р0, Г0 так, чтобы Т = Т0, Тогда АР будет расстоянием между обеими кривыми при одной и той же абсциссе, т. е. разностью между давлением при равновесии двух фаз растворов и двух фаз чистого растворителя (при одной и той же температуре). Теперь ДТ = 0, и из (89,4) получаем
АР
_Т(сх— сп)
(89,7)
Применим эту формулу к равновесию между жидкой и газообразной фазами. В этом случае объемом одной фазы (жидкой) можно пренебречь по сравнению с объемом другой, и (89,7) переходит в
АР
= Г(СК~С|1), (89,8)
где v—молекулярный объем газообразной фазы (фаза I). Замечая, что Pv = T, и подставляя с той же точностью Р « Р0 (Р„ есть давление насыщенного пара над чистым растворителем), можно написать эту формулу в виде
Д/> = Р0(с,-с„).
(89,9)
Если газообразная фаза представляет собой пар чистого растворителя (с,= 0, сп = с), то (89,9) приобретает вид
АР
р- = —с,
(89,10)
где с—концентрация раствора. Эта формула определяет разность между давлением насыщенного пара растворителя над раствором (Р) и над чистым растворителем (Р0). Относительное понижение давления насыщенного пара при растворении равно концентрации раствора (закон Рауля)1).