
- •Часть 1
- •Глава I
- •§ 1. Статистическое распределение
- •§ 2. Статистическая независимость
- •§ 3. Теорема Лиувилля
- •§ 4. Роль энергии
- •§ 5. Статистическая матрица
- •§ 6. Статистическое распределение в квантовой статистике
- •§ 7. Энтропия
- •§ 8. Закон возрастания энтропии
- •Глава II
- •§ 9. Температура
- •§10. Макроскопическое движение
- •1) Производную по вектору надо понимать как вектор, составляющие которого равны производным по составляющим вектора, по которому произ- водится дифференцирование.
- •§11. Адиабатический процесс
- •§ 12. Давление
- •§ 13. Работа и количество тепла
- •§ 14. Тепловая функция
- •§ 15. Свободная энергия н термодинамический потенциал
- •§16. Соотношения между производными термодинамических
- •§ 16] Производные термодинамических величин
- •§ 17. Термодинамическая шкала температуры
- •§ 18. Процесс Джоуля — Томсона
- •§ 19. Максимальная работа
- •§ 20. Максимальная работа, производимая телом, находящимся во внешней среде
- •§ 20] Тело, находящееся во внешней среде 77
- •§ 21. Термодинамические неравенства
- •§ 22. Принцип Ле-Шателье
- •§ 23. Теорема Нернста
- •§ 24. Зависимость термодинамических величин от числа частиц
- •§ 25. Равновесие тела во внешнем поле
- •§ 26. Вращающиеся тела
- •§ 27. Термодинамические соотношения в релятивистской области
- •Глава III
- •§ 28. Распределение Гиббса
- •§ 29. Распределение Максвелла
- •§ 30. Распределение вероятностей для осциллятора
- •§ 31. Свободная энергия в распределении Гиббса
- •§ 32. Термодинамическая теория возмущений
- •§ 33. Разложение по степеням %
- •§ 34. Распределение Гиббса для вращающихся тел
- •§ 35. Распределение Гиббса с переменным числом частиц
- •§ 36. Вывод термодинамических соотношений из распределения Гиббса
- •Глава IV
- •§ 37. Распределение Больцмана
- •§ 38. Распределение Больцмана в классической статистике
- •§ 39. Столкновения молекул
- •§ 40. Неравновесный идеальный газ
- •§ 41. Свободная энергия больцмановского идеального газа
- •§ 42. Уравнение состояния идеального газа
- •§ 43. Идеальный газ с постоянной теплоемкостью
- •15. Определить максимальную работу, которую можно получить с по- мощью идеального газа при охлаждении от температуры т до температуры среды т0 при постоянном объеме.
- •§ 44. Закон равнораспределения
- •§ 43. Одноатомный идеальный газ
- •§ 46. Одноатомный газ. Влияние электронного момента
- •§ 47. Двухатомный газ с молекулами из различных атомов. Вращение молекул
- •§ 48. Двухатомный газ с молекулами из одинаковых атомов. Вращение молекул
- •§ 49. Двухатомный газ. Колебания атомов
- •§ 50. Двухатомный газ. Влияние электронного момента
- •§51] Многоатомный газ 169
- •§ 51. Многоатомный газ
- •§ 52. Магнетизм газов
- •Глава V
- •§ 53. Распределение Ферми
- •§ 54. Распределение Бозе
- •§ 55. Неравновесные ферми- и бозе-газы
- •§ 56. Ферми- и бозе-газы элементарных частиц
- •§ 56] Ферми- и бозе-газы элементарных частиц 185
- •§ 57. Вырожденный электронный газ
- •§ 58. Теплоемкость вырожденного электронного газа
- •§ 59. Магнетизм электронного газа. Слабые поля
- •§ 60. Магнетизм электронного газа. Сильные поля
- •§ 61. Релятивистский вырожденный электронный газ
- •§ 62. Вырожденный бозе-газ
- •§ 63. Черное излучение
- •Глава VI
- •§ 64. Твердые тела при низких температурах
- •§ 65. Твердые тела при высоких температурах
- •§ 66. Интерполяционная формула Дебая
- •§ 67. Тепловое расширение твердых тел
- •§ 68. Сильно анизотропные кристаллы
- •§ 69. Колебания кристаллической решетки
- •§ 70. Плотность числа колебаний
- •§ 71. Фононы.
- •§ 72. Операторы рождения и уничтожения фононов
- •§ 73. Отрицательные температуры
- •Глава VII
- •§ 74. Отклонение газов от идеальности
- •§ 75. Разложение по степеням плотности
- •§ 76. Формула ван-дер Ваальса
- •§ 77. Связь вириального коэффициента с амплитудой рассеяния
- •§ 78. Термодинамические величины классической плазмы
- •§ 79. Метод корреляционных функций
- •§ 80. Термодинамические величины вырожденной плазмы
- •1) В этом случае
- •Глава VIII
- •§ 81. Условия равновесия фаз
- •§ 82. Формула Клапейрона — Клаузиуса
- •§ 83. Критическая точка
- •§ 84. Закон соответственных состояний
- •Глава IX
- •§ 85. Системы с различными частицами
- •§ 86. Правило фаз
- •§ 87. Слабые растворы
- •§ 88. Осмотическое давление
- •§ 89. Соприкосновение фаз растворителя
- •§ 90. Равновесие по отношению к растворенному веществу
- •§ 91. Выделение тепла и изменение объема при растворении
- •§ 92. Растворы сильных электролитов
- •§ 93. Смесь идеальных газов
- •§ 94. Смесь изотопов
- •§ 95. Давление пара над концентрированным раствором
- •§ 96. Термодинамические неравенства в растворах
- •§ 97. Кривые равновесия
- •§ 98. Примеры диаграмм состояния
- •§ 99. Пересечение особых кривых поверхности равновесия
- •§ 100. Газ и жидкость
- •Глава X
- •§ 101. Условие химического равновесия
- •§ 102. Закон действующих масс
- •§ 103. Теплота реакции
- •§ 104. Ионизационное равновесие
- •§ 105. Равновесие по отношению к образованию пар
- •Глава XI
- •§ 106. Уравнение состояния вещества при больших плотностях
- •§ 107. Равновесие тел с большой массой
- •§ 108. Энергия гравитирующего тела
- •§ 109. Равновесие нейтронной сферы
- •Глава XII
- •§110. Распределение Гаусса
- •§ 110] Распределение гаусса 365
- •§ 111. Распределение Гаусса для нескольких величин
- •§ 113. Флуктуации в идеальном газе
- •§114. Формула Пуассона
- •§ 115. Флуктуации в растворах
- •§ 116. Пространственная корреляция флуктуации плотности
- •§ 117. Корреляция флуктуации плотности в вырожденном газе
- •§ 118. Корреляция флуктуации во времени
- •§ 119. Временная корреляция флуктуации нескольких величин
- •§ 120. Симметрия кинетических коэффициентов
- •§ 121. Диссипативная функция
- •§ 122. Спектральное разложение флуктуации
- •§ 123. Обобщенная восприимчивость
- •§ 123] Обобщенная восприимчивость 411
- •§ 124. Флуктуационно-диссипационная теорема
- •§ 125. Флуктуационно-диссипационная теорема для нескольких величин
- •§ 126. Операторное выражение обобщенной восприимчивости
- •§ 127. Флуктуации изгиба длинных молекул
- •Глава XIII
- •§ 128. Элементы симметрии кристаллической решетки
- •§ 129. Решетка Бравэ
- •§ 130. Кристаллические системы
- •§ 131. Кристаллические классы
- •§ 132. Пространственные группы
- •§ 133. Обратная решетка
- •§ 134. Неприводимые представления пространственных групп
- •§ 135. Симметрия относительно обращения времени
- •§ 136. Свойства симметрии нормальных колебаний кристаллической решетки
- •§ 137. Структуры с одно- и двумерной периодичностью
- •§ 138. Корреляционная функция в двумерных системах
- •§ 139. Симметрия по ориентации молекул
- •§ 140. Нематические и холестерические жидкие кристаллы
- •§ 141. Флуктуации в жидких кристаллах
- •Глава XIV
- •§ 142. Фазовые переходы второго рода
- •§ 143. Скачок теплоемкости
- •§ 144. Влияние внешнего поля на фазовый переход
- •§ 145. Изменение симметрии при фазовом переходе второго рода
- •§ 146. Флуктуации параметра порядка
- •§ 147. Эффективный гамильтониан
- •§ 148. Критические индексы
- •§ 149. Масштабная инвариантность
- •§ 150. Изолированные и критические точки непрерывного перехода
- •§ 151. Фазовый переход второго рода в двумерной решетке
- •§ 153. Флуктуационная теория критической точки
- •Глава XV
- •§ 154. Поверхностное натяжение
- •§ 155. Поверхностное натяжение кристаллов
- •§ 156. Поверхностное давление
- •§ 157. Поверхностное натяжение растворов
- •§ 158. Поверхностное натяжение растворов сильных электролитов
- •§ 159. Адсорбция
- •§ 160. Смачивание
- •§ 161. Краевой угол
- •§ 162. Образование зародышей при фазовых переходах
- •§ 1Б2] образование зародышей при фазовых переходах 581
- •§ 163. Невозможность существования фаз в одномерных системах
§ 84. Закон соответственных состояний
Интерполяционное уравнение состояния ван-дер-Ваальса
r~V—Nb У2'
находится в качественном соответствии с описанными выше свойствами перехода между жидкостью и паром.
Определяемые этим уравнением изотермы представлены на рис. 19. Кривые, проходящие над критической точкой К, изображают монотонно убывающие функции Р (V) при Т > Гкр. Изотерма, проходящая через критическую точку, имеет в ней перегиб. При температурах же Г < Ткр каждая изотерма имеет минимум и максимум, между которыми лежит участок с (дР/дУ)т>0; эти участки (показанные на рис. 19 пунктиром) не соответствуют каким бы то ни было реально существующим в природе однородным состояниям вещества.
Как уже было объяснено в предыдущем параграфе, равновесному переходу жидкости в газ соответствует горизонтальный прямой отрезок, пересекающий изотерму. Уровень, на котором должен быть проведен этот отрезок, определяется условием фазового равновесия n1 = \ii, которое напишем в виде
J d\i = О,
где интеграл берется по пути перехода из состояния одной фазы в состояние другой фазы. Интегрируя вдоль изотермы, имеем
d\i
=
vdP,
так что
(84,2)
Геометрически это условие означает равенство площадей, заштрихованных на рис. 19 для одной из изотерм (правило Максвелла) .
Критические температура, давление и объем могут быть выражены через параметры а и Ь, входящие в уравнение ван-дер-Ваальса. Для этого дифференцируем выражение (84,1) и пишем уравнения
дР \ dV )т''
о (Щ =0
определяющие точку перегиба на изотерме. Вместе с уравнением (84,1) они дают
8 а
КР — 27 Т '
кр 27 о2
1 а
V =ЗМ> Р = — —
' Кр , * КО 07 А2
(84,3)
Введем теперь приведенные температуру, давление и объем согласно определениям
f 71 р, Р у, V
1 т > * р > ' и
' Кр г Кр * Кр
(84,4)
Выраженное через эти величины, уравнение ван-дер-Ваальса принимает вид
(Р'+уъ) (ЗУ'-1) = 8Г. (84,5)
В это уравнение входят только У, Я' и Г' и не входят никакие величины, характеризующие данное вещество. Поэтому урав
нение
(84,5) есть уравнение состояния для всех
тел, к которым вообще применимо уравнение
ван-дер-Ваальса. Состояния двух тел, в
которых они имеют одинаковые Т',
Р', V, называются
соответственными
состояниями
(критические
состояния всех тел, очевидно, являются
соответственными). Из (84,5) следует, что
если два тела имеют одинаковые две из
трех величин 7", Р',
V, то
они имеют одинаковую и третью из этих
величин, т. е. находятся в соответственных
состояниях (закон
соответственных
состояний).
«Приведенные»
изотермы Р'
=
Р'
(V), определяемые
уравнением (84,5), одинаковы для всех
веществ. Одинаковы, следовательно,
и положения прямых отрезков, определяющих
точки перехода жидкости в газ. Поэтому
можно заключить, что при одинаковых
приведенных температурах все вещества
должны обладать одинаковыми: 1) приведенным
давлением насыщенного пара, 2) приведенным
удельным объемом насыщенного пара, 3)
приведенным удельным объемом жидкости,
находящейся в равновесии с насыщенным
паром.
Закон
соответственных состояний может быть
применен и к теплоте перехода из жидкого
состояния в газообразное. Роль
«приведенной теплоты испарения» должна
при этом играть безразмерная величина,
т. е. q/TKr
Таким
образом, можно написать *):
(84,6)
В
заключение заметим, что закон
соответственных состояний не специфичен
именно для уравнения ван-дер-Ваальса.
Параметры, характеризующие конкретное
вещество, выпадают при переходе к
приведенным величинам из любого
уравнения состояния, содержащего
всего два таких параметра. Закон
соответственных состояний, понимаемый
как общее утверждение, не связанное
с тем или иным конкретным видом уравнения
состояния, сам по себе несколько более
точен, чем уравнение ван-дер-Ваальса.
Однако и его применимость, вообще
говоря, весьма ограничена.
*)
При температурах, существенно меньших
критической, отношение q/T,
равно
примерно десяти (q—молекулярная
теплота испарения).