
- •Часть 1
- •Глава I
- •§ 1. Статистическое распределение
- •§ 2. Статистическая независимость
- •§ 3. Теорема Лиувилля
- •§ 4. Роль энергии
- •§ 5. Статистическая матрица
- •§ 6. Статистическое распределение в квантовой статистике
- •§ 7. Энтропия
- •§ 8. Закон возрастания энтропии
- •Глава II
- •§ 9. Температура
- •§10. Макроскопическое движение
- •1) Производную по вектору надо понимать как вектор, составляющие которого равны производным по составляющим вектора, по которому произ- водится дифференцирование.
- •§11. Адиабатический процесс
- •§ 12. Давление
- •§ 13. Работа и количество тепла
- •§ 14. Тепловая функция
- •§ 15. Свободная энергия н термодинамический потенциал
- •§16. Соотношения между производными термодинамических
- •§ 16] Производные термодинамических величин
- •§ 17. Термодинамическая шкала температуры
- •§ 18. Процесс Джоуля — Томсона
- •§ 19. Максимальная работа
- •§ 20. Максимальная работа, производимая телом, находящимся во внешней среде
- •§ 20] Тело, находящееся во внешней среде 77
- •§ 21. Термодинамические неравенства
- •§ 22. Принцип Ле-Шателье
- •§ 23. Теорема Нернста
- •§ 24. Зависимость термодинамических величин от числа частиц
- •§ 25. Равновесие тела во внешнем поле
- •§ 26. Вращающиеся тела
- •§ 27. Термодинамические соотношения в релятивистской области
- •Глава III
- •§ 28. Распределение Гиббса
- •§ 29. Распределение Максвелла
- •§ 30. Распределение вероятностей для осциллятора
- •§ 31. Свободная энергия в распределении Гиббса
- •§ 32. Термодинамическая теория возмущений
- •§ 33. Разложение по степеням %
- •§ 34. Распределение Гиббса для вращающихся тел
- •§ 35. Распределение Гиббса с переменным числом частиц
- •§ 36. Вывод термодинамических соотношений из распределения Гиббса
- •Глава IV
- •§ 37. Распределение Больцмана
- •§ 38. Распределение Больцмана в классической статистике
- •§ 39. Столкновения молекул
- •§ 40. Неравновесный идеальный газ
- •§ 41. Свободная энергия больцмановского идеального газа
- •§ 42. Уравнение состояния идеального газа
- •§ 43. Идеальный газ с постоянной теплоемкостью
- •15. Определить максимальную работу, которую можно получить с по- мощью идеального газа при охлаждении от температуры т до температуры среды т0 при постоянном объеме.
- •§ 44. Закон равнораспределения
- •§ 43. Одноатомный идеальный газ
- •§ 46. Одноатомный газ. Влияние электронного момента
- •§ 47. Двухатомный газ с молекулами из различных атомов. Вращение молекул
- •§ 48. Двухатомный газ с молекулами из одинаковых атомов. Вращение молекул
- •§ 49. Двухатомный газ. Колебания атомов
- •§ 50. Двухатомный газ. Влияние электронного момента
- •§51] Многоатомный газ 169
- •§ 51. Многоатомный газ
- •§ 52. Магнетизм газов
- •Глава V
- •§ 53. Распределение Ферми
- •§ 54. Распределение Бозе
- •§ 55. Неравновесные ферми- и бозе-газы
- •§ 56. Ферми- и бозе-газы элементарных частиц
- •§ 56] Ферми- и бозе-газы элементарных частиц 185
- •§ 57. Вырожденный электронный газ
- •§ 58. Теплоемкость вырожденного электронного газа
- •§ 59. Магнетизм электронного газа. Слабые поля
- •§ 60. Магнетизм электронного газа. Сильные поля
- •§ 61. Релятивистский вырожденный электронный газ
- •§ 62. Вырожденный бозе-газ
- •§ 63. Черное излучение
- •Глава VI
- •§ 64. Твердые тела при низких температурах
- •§ 65. Твердые тела при высоких температурах
- •§ 66. Интерполяционная формула Дебая
- •§ 67. Тепловое расширение твердых тел
- •§ 68. Сильно анизотропные кристаллы
- •§ 69. Колебания кристаллической решетки
- •§ 70. Плотность числа колебаний
- •§ 71. Фононы.
- •§ 72. Операторы рождения и уничтожения фононов
- •§ 73. Отрицательные температуры
- •Глава VII
- •§ 74. Отклонение газов от идеальности
- •§ 75. Разложение по степеням плотности
- •§ 76. Формула ван-дер Ваальса
- •§ 77. Связь вириального коэффициента с амплитудой рассеяния
- •§ 78. Термодинамические величины классической плазмы
- •§ 79. Метод корреляционных функций
- •§ 80. Термодинамические величины вырожденной плазмы
- •1) В этом случае
- •Глава VIII
- •§ 81. Условия равновесия фаз
- •§ 82. Формула Клапейрона — Клаузиуса
- •§ 83. Критическая точка
- •§ 84. Закон соответственных состояний
- •Глава IX
- •§ 85. Системы с различными частицами
- •§ 86. Правило фаз
- •§ 87. Слабые растворы
- •§ 88. Осмотическое давление
- •§ 89. Соприкосновение фаз растворителя
- •§ 90. Равновесие по отношению к растворенному веществу
- •§ 91. Выделение тепла и изменение объема при растворении
- •§ 92. Растворы сильных электролитов
- •§ 93. Смесь идеальных газов
- •§ 94. Смесь изотопов
- •§ 95. Давление пара над концентрированным раствором
- •§ 96. Термодинамические неравенства в растворах
- •§ 97. Кривые равновесия
- •§ 98. Примеры диаграмм состояния
- •§ 99. Пересечение особых кривых поверхности равновесия
- •§ 100. Газ и жидкость
- •Глава X
- •§ 101. Условие химического равновесия
- •§ 102. Закон действующих масс
- •§ 103. Теплота реакции
- •§ 104. Ионизационное равновесие
- •§ 105. Равновесие по отношению к образованию пар
- •Глава XI
- •§ 106. Уравнение состояния вещества при больших плотностях
- •§ 107. Равновесие тел с большой массой
- •§ 108. Энергия гравитирующего тела
- •§ 109. Равновесие нейтронной сферы
- •Глава XII
- •§110. Распределение Гаусса
- •§ 110] Распределение гаусса 365
- •§ 111. Распределение Гаусса для нескольких величин
- •§ 113. Флуктуации в идеальном газе
- •§114. Формула Пуассона
- •§ 115. Флуктуации в растворах
- •§ 116. Пространственная корреляция флуктуации плотности
- •§ 117. Корреляция флуктуации плотности в вырожденном газе
- •§ 118. Корреляция флуктуации во времени
- •§ 119. Временная корреляция флуктуации нескольких величин
- •§ 120. Симметрия кинетических коэффициентов
- •§ 121. Диссипативная функция
- •§ 122. Спектральное разложение флуктуации
- •§ 123. Обобщенная восприимчивость
- •§ 123] Обобщенная восприимчивость 411
- •§ 124. Флуктуационно-диссипационная теорема
- •§ 125. Флуктуационно-диссипационная теорема для нескольких величин
- •§ 126. Операторное выражение обобщенной восприимчивости
- •§ 127. Флуктуации изгиба длинных молекул
- •Глава XIII
- •§ 128. Элементы симметрии кристаллической решетки
- •§ 129. Решетка Бравэ
- •§ 130. Кристаллические системы
- •§ 131. Кристаллические классы
- •§ 132. Пространственные группы
- •§ 133. Обратная решетка
- •§ 134. Неприводимые представления пространственных групп
- •§ 135. Симметрия относительно обращения времени
- •§ 136. Свойства симметрии нормальных колебаний кристаллической решетки
- •§ 137. Структуры с одно- и двумерной периодичностью
- •§ 138. Корреляционная функция в двумерных системах
- •§ 139. Симметрия по ориентации молекул
- •§ 140. Нематические и холестерические жидкие кристаллы
- •§ 141. Флуктуации в жидких кристаллах
- •Глава XIV
- •§ 142. Фазовые переходы второго рода
- •§ 143. Скачок теплоемкости
- •§ 144. Влияние внешнего поля на фазовый переход
- •§ 145. Изменение симметрии при фазовом переходе второго рода
- •§ 146. Флуктуации параметра порядка
- •§ 147. Эффективный гамильтониан
- •§ 148. Критические индексы
- •§ 149. Масштабная инвариантность
- •§ 150. Изолированные и критические точки непрерывного перехода
- •§ 151. Фазовый переход второго рода в двумерной решетке
- •§ 153. Флуктуационная теория критической точки
- •Глава XV
- •§ 154. Поверхностное натяжение
- •§ 155. Поверхностное натяжение кристаллов
- •§ 156. Поверхностное давление
- •§ 157. Поверхностное натяжение растворов
- •§ 158. Поверхностное натяжение растворов сильных электролитов
- •§ 159. Адсорбция
- •§ 160. Смачивание
- •§ 161. Краевой угол
- •§ 162. Образование зародышей при фазовых переходах
- •§ 1Б2] образование зародышей при фазовых переходах 581
- •§ 163. Невозможность существования фаз в одномерных системах
§ 79. Метод корреляционных функций
Преимущество изложенного в предыдущем параграфе метода Дебая — Хюккеля состоит в его простоте и физической прозрачности. С другой стороны, его основной недостаток заключается в невозможности обобщения для вычисления следующих приближений по концентрации. Мы изложим поэтому вкратце также и другой метод (предложенный Н. Н. Боголюбовым, 1946), хотя и более сложный, но позволяющий в принципе вычислить также и следующие члены разложения термодинамических величин.
Этот метод основан на рассмотрении так называемых корреляционных функций между одновременными положениями нескольких частиц в заданных точках пространства. Простейшей и наиболее важной из них является бинарная корреляционная функция wab, пропорциональная вероятности найти одновременно две частицы (иона) в заданных точках ха и хь (оба иона а и Ь могут быть как одного, так и разных родов). Ввиду изотропии и однородности газа эта функция зависит, конечно, лишь от г = |ть — га\. Мы выберем нормировочный коэффициент в функции wab таким образом, чтобы она стремилась к единице при г—>-оо.
Если функция wab известна, искомая энергия ЕК09Р может быть найдена путем интегрирования по очевидной формуле1)
£к0Рр = £ NaNb j j uabwabdVadVb, (79,1)
a, b
где суммирование ведется по всем родам ионов, а иаЬ — энергия кулоновского взаимодействия пары ионов на расстоянии г.
Согласно формуле распределения Гиббса функция wab дается следующим выражением:
™ab = yj^rr J ехр { F-F^-U } dV.dV, ... dVN-t, (79,2)
где U — энергия кулоновского взаимодействия всех ионов, а интегрирование производится по координатам всех ионов, за исключением двух данных ионов. Для приближенного вычисления этого интеграла воспользуемся следующим приемом.
Дифференцируем равенство (79,2) по координатам иона Ь:
1)
Сама по
себе эта формула не связана, конечно,
с кулоновским характером взаимодействия
частиц и предполагает лишь его парность.
где
суммирование в последнем члене
производится по всем родам ионов, a
wabc—
тройная функция корреляции, определенная
согласно
^jexp{4p^}dVlfly3
...
dVN.
wabc
=
-v^\**V\—-^г favjav,
...
avN-3
по
аналогии с (79,2).
Предполагая
газ достаточно разреженным и рассматривая
лишь члены первого порядка, можно
выразить функцию тройной корреляции
через бинарные корреляции. Действительно,
пренебрегая возможностью всем трем
ионам находиться вблизи друг друга,
имеем
wabc=wa^bcwac.
В
том же приближении мы можем считать,
что даже пары частиц не находятся
настолько близко друг к другу, чтобы
wab
существенно
отличались от единицы. Вводя малые
величины
<*аь
=
и>аЪ—1 (79,4)
и
пренебрегая их высшими степенями, можем
написать:
*»аЪс
=
«аЬ
+
Щс
+ ®ас + 1
• (79,5)
При
подстановке этого выражения в интеграл
в правой стороне (79,3) остается только
член с ыас;
остальные
обращаются тождественно в нуль в силу
изотропии газа. В первом члене справа
в (79,3) достаточно положить wti—l.
Таким
образом,
да>аЬ
_ 1
диаЬ
1
ж-,
л,
С
ди,
дть
~~
Т дгь
TV
с
Возьмем
теперь дивергенцию от обеих сторон
этого равенства, помня, что
_
zazbe*
иаЬ т >
г —ri
—
га,
и
учитывая известную формулу
д|
=
-
4яб(г).
После
этого интегрирование становится
тривиальным ввиду наличия б-функции,
и мы получаем
AoU
(г)
= б
(г)
+
^
£
Ысгсыас
(г).
(79,6)
с
Решение
этой системы уравнений можно искать в
виде
<oe»(r)
=
z,zj©(r)f (79,7)
в результате чего система сводится к одному уравнению
Дсо (г) — и2со (г) = ^ б (г). (79,8)
Это окончательное уравнение имеет ту же форму, что и уравнение (78,7) в методе Дебая — Хюккеля (член с б-функцией в (79,8) соответствует граничному условию при г—у 0, накладываемому на функцию ср (г) в (78,7)). Решение уравнения (79,8):
чем и определяются бинарные корреляционные функции в плазме.
Для вычисления энергии достаточно подставить теперь wab из (79,4), (79,7), (79,9) в (79,1). Переходя к интегрированию по относительным координатам двух частиц, находим
Якорр = -1 £ пап„ J . - " 4яг* dr
а, Ь О
(член 1 в wab не дает вклада в энергию в силу условия электрической нейтральности плазмы). Произведя интегрирование, вернемся к прежнему результату (78,11).
В следующем приближении вычисления становятся более громоздкими. В частности, предположение (79,5) теперь недостаточно, и следует ввести тройные корреляции, не сводящиеся уже к бинарным. Для них получается уравнение, аналогичное (79,3), содержащее теперь четверные корреляции, которые, однако, в данном (втором) приближении сводятся к тройным1).