
- •Часть 1
- •Глава I
- •§ 1. Статистическое распределение
- •§ 2. Статистическая независимость
- •§ 3. Теорема Лиувилля
- •§ 4. Роль энергии
- •§ 5. Статистическая матрица
- •§ 6. Статистическое распределение в квантовой статистике
- •§ 7. Энтропия
- •§ 8. Закон возрастания энтропии
- •Глава II
- •§ 9. Температура
- •§10. Макроскопическое движение
- •1) Производную по вектору надо понимать как вектор, составляющие которого равны производным по составляющим вектора, по которому произ- водится дифференцирование.
- •§11. Адиабатический процесс
- •§ 12. Давление
- •§ 13. Работа и количество тепла
- •§ 14. Тепловая функция
- •§ 15. Свободная энергия н термодинамический потенциал
- •§16. Соотношения между производными термодинамических
- •§ 16] Производные термодинамических величин
- •§ 17. Термодинамическая шкала температуры
- •§ 18. Процесс Джоуля — Томсона
- •§ 19. Максимальная работа
- •§ 20. Максимальная работа, производимая телом, находящимся во внешней среде
- •§ 20] Тело, находящееся во внешней среде 77
- •§ 21. Термодинамические неравенства
- •§ 22. Принцип Ле-Шателье
- •§ 23. Теорема Нернста
- •§ 24. Зависимость термодинамических величин от числа частиц
- •§ 25. Равновесие тела во внешнем поле
- •§ 26. Вращающиеся тела
- •§ 27. Термодинамические соотношения в релятивистской области
- •Глава III
- •§ 28. Распределение Гиббса
- •§ 29. Распределение Максвелла
- •§ 30. Распределение вероятностей для осциллятора
- •§ 31. Свободная энергия в распределении Гиббса
- •§ 32. Термодинамическая теория возмущений
- •§ 33. Разложение по степеням %
- •§ 34. Распределение Гиббса для вращающихся тел
- •§ 35. Распределение Гиббса с переменным числом частиц
- •§ 36. Вывод термодинамических соотношений из распределения Гиббса
- •Глава IV
- •§ 37. Распределение Больцмана
- •§ 38. Распределение Больцмана в классической статистике
- •§ 39. Столкновения молекул
- •§ 40. Неравновесный идеальный газ
- •§ 41. Свободная энергия больцмановского идеального газа
- •§ 42. Уравнение состояния идеального газа
- •§ 43. Идеальный газ с постоянной теплоемкостью
- •15. Определить максимальную работу, которую можно получить с по- мощью идеального газа при охлаждении от температуры т до температуры среды т0 при постоянном объеме.
- •§ 44. Закон равнораспределения
- •§ 43. Одноатомный идеальный газ
- •§ 46. Одноатомный газ. Влияние электронного момента
- •§ 47. Двухатомный газ с молекулами из различных атомов. Вращение молекул
- •§ 48. Двухатомный газ с молекулами из одинаковых атомов. Вращение молекул
- •§ 49. Двухатомный газ. Колебания атомов
- •§ 50. Двухатомный газ. Влияние электронного момента
- •§51] Многоатомный газ 169
- •§ 51. Многоатомный газ
- •§ 52. Магнетизм газов
- •Глава V
- •§ 53. Распределение Ферми
- •§ 54. Распределение Бозе
- •§ 55. Неравновесные ферми- и бозе-газы
- •§ 56. Ферми- и бозе-газы элементарных частиц
- •§ 56] Ферми- и бозе-газы элементарных частиц 185
- •§ 57. Вырожденный электронный газ
- •§ 58. Теплоемкость вырожденного электронного газа
- •§ 59. Магнетизм электронного газа. Слабые поля
- •§ 60. Магнетизм электронного газа. Сильные поля
- •§ 61. Релятивистский вырожденный электронный газ
- •§ 62. Вырожденный бозе-газ
- •§ 63. Черное излучение
- •Глава VI
- •§ 64. Твердые тела при низких температурах
- •§ 65. Твердые тела при высоких температурах
- •§ 66. Интерполяционная формула Дебая
- •§ 67. Тепловое расширение твердых тел
- •§ 68. Сильно анизотропные кристаллы
- •§ 69. Колебания кристаллической решетки
- •§ 70. Плотность числа колебаний
- •§ 71. Фононы.
- •§ 72. Операторы рождения и уничтожения фононов
- •§ 73. Отрицательные температуры
- •Глава VII
- •§ 74. Отклонение газов от идеальности
- •§ 75. Разложение по степеням плотности
- •§ 76. Формула ван-дер Ваальса
- •§ 77. Связь вириального коэффициента с амплитудой рассеяния
- •§ 78. Термодинамические величины классической плазмы
- •§ 79. Метод корреляционных функций
- •§ 80. Термодинамические величины вырожденной плазмы
- •1) В этом случае
- •Глава VIII
- •§ 81. Условия равновесия фаз
- •§ 82. Формула Клапейрона — Клаузиуса
- •§ 83. Критическая точка
- •§ 84. Закон соответственных состояний
- •Глава IX
- •§ 85. Системы с различными частицами
- •§ 86. Правило фаз
- •§ 87. Слабые растворы
- •§ 88. Осмотическое давление
- •§ 89. Соприкосновение фаз растворителя
- •§ 90. Равновесие по отношению к растворенному веществу
- •§ 91. Выделение тепла и изменение объема при растворении
- •§ 92. Растворы сильных электролитов
- •§ 93. Смесь идеальных газов
- •§ 94. Смесь изотопов
- •§ 95. Давление пара над концентрированным раствором
- •§ 96. Термодинамические неравенства в растворах
- •§ 97. Кривые равновесия
- •§ 98. Примеры диаграмм состояния
- •§ 99. Пересечение особых кривых поверхности равновесия
- •§ 100. Газ и жидкость
- •Глава X
- •§ 101. Условие химического равновесия
- •§ 102. Закон действующих масс
- •§ 103. Теплота реакции
- •§ 104. Ионизационное равновесие
- •§ 105. Равновесие по отношению к образованию пар
- •Глава XI
- •§ 106. Уравнение состояния вещества при больших плотностях
- •§ 107. Равновесие тел с большой массой
- •§ 108. Энергия гравитирующего тела
- •§ 109. Равновесие нейтронной сферы
- •Глава XII
- •§110. Распределение Гаусса
- •§ 110] Распределение гаусса 365
- •§ 111. Распределение Гаусса для нескольких величин
- •§ 113. Флуктуации в идеальном газе
- •§114. Формула Пуассона
- •§ 115. Флуктуации в растворах
- •§ 116. Пространственная корреляция флуктуации плотности
- •§ 117. Корреляция флуктуации плотности в вырожденном газе
- •§ 118. Корреляция флуктуации во времени
- •§ 119. Временная корреляция флуктуации нескольких величин
- •§ 120. Симметрия кинетических коэффициентов
- •§ 121. Диссипативная функция
- •§ 122. Спектральное разложение флуктуации
- •§ 123. Обобщенная восприимчивость
- •§ 123] Обобщенная восприимчивость 411
- •§ 124. Флуктуационно-диссипационная теорема
- •§ 125. Флуктуационно-диссипационная теорема для нескольких величин
- •§ 126. Операторное выражение обобщенной восприимчивости
- •§ 127. Флуктуации изгиба длинных молекул
- •Глава XIII
- •§ 128. Элементы симметрии кристаллической решетки
- •§ 129. Решетка Бравэ
- •§ 130. Кристаллические системы
- •§ 131. Кристаллические классы
- •§ 132. Пространственные группы
- •§ 133. Обратная решетка
- •§ 134. Неприводимые представления пространственных групп
- •§ 135. Симметрия относительно обращения времени
- •§ 136. Свойства симметрии нормальных колебаний кристаллической решетки
- •§ 137. Структуры с одно- и двумерной периодичностью
- •§ 138. Корреляционная функция в двумерных системах
- •§ 139. Симметрия по ориентации молекул
- •§ 140. Нематические и холестерические жидкие кристаллы
- •§ 141. Флуктуации в жидких кристаллах
- •Глава XIV
- •§ 142. Фазовые переходы второго рода
- •§ 143. Скачок теплоемкости
- •§ 144. Влияние внешнего поля на фазовый переход
- •§ 145. Изменение симметрии при фазовом переходе второго рода
- •§ 146. Флуктуации параметра порядка
- •§ 147. Эффективный гамильтониан
- •§ 148. Критические индексы
- •§ 149. Масштабная инвариантность
- •§ 150. Изолированные и критические точки непрерывного перехода
- •§ 151. Фазовый переход второго рода в двумерной решетке
- •§ 153. Флуктуационная теория критической точки
- •Глава XV
- •§ 154. Поверхностное натяжение
- •§ 155. Поверхностное натяжение кристаллов
- •§ 156. Поверхностное давление
- •§ 157. Поверхностное натяжение растворов
- •§ 158. Поверхностное натяжение растворов сильных электролитов
- •§ 159. Адсорбция
- •§ 160. Смачивание
- •§ 161. Краевой угол
- •§ 162. Образование зародышей при фазовых переходах
- •§ 1Б2] образование зародышей при фазовых переходах 581
- •§ 163. Невозможность существования фаз в одномерных системах
§ 71. Фононы.
Обратимся к вопросу о том, как выглядит картина колебаний решетки с точки зрения квантовой теории.
Вместо волн (69,6), в которых атомы испытывают в каждый момент времени определенные смещения, в квантовой теории вводится понятие о так называемых фононах как о некоторых распространяющихся по решетке квазичастицах, обладающих определенными энергиями и направлениями движения. Поскольку энергия осциллятора в квантовой механике есть целое кратное от %(л (где со—частота классической волны), то энергия фонона связана с частотой со посредством
(71,1)
подобно тому, как это имеет место для световых , квантов—фотонов. Что же касается волнового вектора к, то он определяет так называемый квазиимпульс фонона р:
р = &к.
(71,2)
Это величина, во многом аналогичная обычному импульсу. В то же время между ними имеется существенное отличие, связанное с тем, что квазиимпульс есть величина, определенная лишь с точностью до прибавления постоянного вектора вида %Ъ; значения р, отличающиеся на такую величину, физически эквивалентны.
Скорость фонона определяется групповой скоростью соответствующих классических волн: v = dco/dk. Написанная в виде
эта формула вполне аналогична обычному соотношению между энергией, импульсом и скоростью частиц.
Все сказанное в §§ 69, 70 о свойствах спектра классических колебаний кристаллической решетки, полностью переносится (с соответствующим изменением терминологии) на энергетический спектр фононов—зависимость их энергии от квазиимпульса. В частности, энергетический спектр фононов е(р) имеет 3v ветвей, в том числе три акустические ветви. Рассмотренная в § 70 плотность числа колебаний становится теперь плотностью числа квантовых состояний фононов.
Свободному распространению волн в гармоническом приближении соответствует в квантовой картине свободное движение не взаимодействующих друг с другом фононов. В следующих же приближениях появляются различного рода процессы упругих и неупругих столкновений фононов. Эти столкновения и составляют механизм, приводящий к установлению теплового равновесия в фононном газе, т. е. к установлению равновесного теплового движения в решетке.
При всех таких процессах должен соблюдаться закон сохранения энергии, а также закон сохранения квазиимпульса. Последний, однако, требует сохранения суммарного квазиимпульса фононов лишь с точностью до прибавления любого вектора вида fib, что связано с неоднозначностью самого квазиимпульса. Таким образом, начальные (р) и конечные (р') квазиимпульсы при каком-либо процессе столкновения фононов должны быть связаны соотношением вида*)
2р = 2р'+Аь. (71,4)
В решетке может быть возбуждено одновременно сколько угодно одинаковых фононов; другими словами, в каждом квантовом состоянии фононов может находиться любое их число (в классической картине этому отвечает произвольная интенсивность волн). Это значит, что фононный газ подчиняется статистике Бозе. Поскольку к тому же полное число частиц в этом газе не является заданным и само определяется условиями равновесия, то его химический потенциал равен нулю (см. § 63). Поэтому среднее число фононов в каждом квантовом состоянии (с квазиимпульсом р и энергией е) определяется в тепловом равновесии функцией распределения Планка
"р = 7^7г—[■ (71,5)
Отметим, что при высоких температурах (71^>е) это выражение переходит в
т. е. число фононов в данном состоянии пропорционально температуре.
Понятие о фононах является частным случаем более общего понятия, играющего основную роль в теории квантовых энергетических спектров всяких макроскопических тел. Всякое слабо возбужденное состояние макроскопического тела может рассматриваться в квантовой механике как совокупность отдельных элементарных возбуждений. Эти элементарные возбуждения ведут себя как некоторые квазичастицы, движущиеся в занимаемом телом объеме. До тех пор, пока число элементарных возбуждений достаточно мало, они «не взаимодействуют» друг с другом (т. е. их энергии просто складываются), так что их совокупность можно рассматривать как идеальный газ квазичастиц. Подчеркнем лишний раз, что понятие элементарных возбуждений возникает как способ квантовомеханического описания коллективного движения атомов тела, и они ни в какой мере не могут быть отождествлены с отдельными атомами или молекулами.
1)
Процессы, в которых суммарный квазиимпульс
не остается постоянным, а меняется на
называют процессами
переброса.
было отмечено в § 64, в твердых телах эти колебания фактически всегда малы, а потому и «почти гармоничны». Поэтому взаимодействие фононов в твердых телах фактически всегда слабо.
В заключение выпишем формулы, определяющие термодинамические величины твердого тела по спектру фононов в нем.
2|
a=l
J
(71,7)
. (2л)3
3V |~i ( Ц* (k)\1 Vd8fe In 1—ехр( -
F = Nz0 + T
где суммирование производится по всем ветвям спектра, а интегрирование—по значениям к в одной ячейке обратной решетки1). Введя плотности ga (со) числа состояний в каждой ветви спектра и перейдя к интегрированию по частотам, эту формулу можно записать также и в виде
F = Nz0 + TV2l \\n(l—e-^T)ga(a)d(o. (71,8)
Неравновесное макроскопическое состояние твердого тела описывается некоторым неравновесным распределением фононов по их квантовым состояниям, подобно тому, как это делается для идеального газа. Энтропия тела в таком состоянии может быть вычислена с помощью полученных в § 55 (для бозе-газа) формул. В частности, если в каждом состоянии имеется много фононов, энтропия равна
„ eN,
где Nj—число фононов в группе из Gj близких состояний (см. (55,8)). Этот случай отвечает высоким температурам (Г^>6). Перепишем эту формулу в интегральном виде, отвечающем классической картине тепловых колебаний. Число состояний фононов (в каждой из ветвей спектра), приходящихся на интервал d3k значений волнового вектора и элемента dV пространственного объема, есть dx^=d3kdV/(2л)3. Пусть Ua(r, k)dx—энергия тепловых колебаний в том же элементе фазового пространства dr. Соответствующее число фононов есть
х) Эта формула была уже использована в § 68 для вклада в свободную энергию от акустических ветвей спектра.
^dx. Ua (к)
Подставляя эти выражения вместо Gj и N}- и переходя к интегрированию, получим следующую формулу для энтропии твердого тела с заданным неравновесным распределением энергии в спектре тепловых колебаний:
3v
v-i Г eU„ (г, к)