
- •Часть 1
- •Глава I
- •§ 1. Статистическое распределение
- •§ 2. Статистическая независимость
- •§ 3. Теорема Лиувилля
- •§ 4. Роль энергии
- •§ 5. Статистическая матрица
- •§ 6. Статистическое распределение в квантовой статистике
- •§ 7. Энтропия
- •§ 8. Закон возрастания энтропии
- •Глава II
- •§ 9. Температура
- •§10. Макроскопическое движение
- •1) Производную по вектору надо понимать как вектор, составляющие которого равны производным по составляющим вектора, по которому произ- водится дифференцирование.
- •§11. Адиабатический процесс
- •§ 12. Давление
- •§ 13. Работа и количество тепла
- •§ 14. Тепловая функция
- •§ 15. Свободная энергия н термодинамический потенциал
- •§16. Соотношения между производными термодинамических
- •§ 16] Производные термодинамических величин
- •§ 17. Термодинамическая шкала температуры
- •§ 18. Процесс Джоуля — Томсона
- •§ 19. Максимальная работа
- •§ 20. Максимальная работа, производимая телом, находящимся во внешней среде
- •§ 20] Тело, находящееся во внешней среде 77
- •§ 21. Термодинамические неравенства
- •§ 22. Принцип Ле-Шателье
- •§ 23. Теорема Нернста
- •§ 24. Зависимость термодинамических величин от числа частиц
- •§ 25. Равновесие тела во внешнем поле
- •§ 26. Вращающиеся тела
- •§ 27. Термодинамические соотношения в релятивистской области
- •Глава III
- •§ 28. Распределение Гиббса
- •§ 29. Распределение Максвелла
- •§ 30. Распределение вероятностей для осциллятора
- •§ 31. Свободная энергия в распределении Гиббса
- •§ 32. Термодинамическая теория возмущений
- •§ 33. Разложение по степеням %
- •§ 34. Распределение Гиббса для вращающихся тел
- •§ 35. Распределение Гиббса с переменным числом частиц
- •§ 36. Вывод термодинамических соотношений из распределения Гиббса
- •Глава IV
- •§ 37. Распределение Больцмана
- •§ 38. Распределение Больцмана в классической статистике
- •§ 39. Столкновения молекул
- •§ 40. Неравновесный идеальный газ
- •§ 41. Свободная энергия больцмановского идеального газа
- •§ 42. Уравнение состояния идеального газа
- •§ 43. Идеальный газ с постоянной теплоемкостью
- •15. Определить максимальную работу, которую можно получить с по- мощью идеального газа при охлаждении от температуры т до температуры среды т0 при постоянном объеме.
- •§ 44. Закон равнораспределения
- •§ 43. Одноатомный идеальный газ
- •§ 46. Одноатомный газ. Влияние электронного момента
- •§ 47. Двухатомный газ с молекулами из различных атомов. Вращение молекул
- •§ 48. Двухатомный газ с молекулами из одинаковых атомов. Вращение молекул
- •§ 49. Двухатомный газ. Колебания атомов
- •§ 50. Двухатомный газ. Влияние электронного момента
- •§51] Многоатомный газ 169
- •§ 51. Многоатомный газ
- •§ 52. Магнетизм газов
- •Глава V
- •§ 53. Распределение Ферми
- •§ 54. Распределение Бозе
- •§ 55. Неравновесные ферми- и бозе-газы
- •§ 56. Ферми- и бозе-газы элементарных частиц
- •§ 56] Ферми- и бозе-газы элементарных частиц 185
- •§ 57. Вырожденный электронный газ
- •§ 58. Теплоемкость вырожденного электронного газа
- •§ 59. Магнетизм электронного газа. Слабые поля
- •§ 60. Магнетизм электронного газа. Сильные поля
- •§ 61. Релятивистский вырожденный электронный газ
- •§ 62. Вырожденный бозе-газ
- •§ 63. Черное излучение
- •Глава VI
- •§ 64. Твердые тела при низких температурах
- •§ 65. Твердые тела при высоких температурах
- •§ 66. Интерполяционная формула Дебая
- •§ 67. Тепловое расширение твердых тел
- •§ 68. Сильно анизотропные кристаллы
- •§ 69. Колебания кристаллической решетки
- •§ 70. Плотность числа колебаний
- •§ 71. Фононы.
- •§ 72. Операторы рождения и уничтожения фононов
- •§ 73. Отрицательные температуры
- •Глава VII
- •§ 74. Отклонение газов от идеальности
- •§ 75. Разложение по степеням плотности
- •§ 76. Формула ван-дер Ваальса
- •§ 77. Связь вириального коэффициента с амплитудой рассеяния
- •§ 78. Термодинамические величины классической плазмы
- •§ 79. Метод корреляционных функций
- •§ 80. Термодинамические величины вырожденной плазмы
- •1) В этом случае
- •Глава VIII
- •§ 81. Условия равновесия фаз
- •§ 82. Формула Клапейрона — Клаузиуса
- •§ 83. Критическая точка
- •§ 84. Закон соответственных состояний
- •Глава IX
- •§ 85. Системы с различными частицами
- •§ 86. Правило фаз
- •§ 87. Слабые растворы
- •§ 88. Осмотическое давление
- •§ 89. Соприкосновение фаз растворителя
- •§ 90. Равновесие по отношению к растворенному веществу
- •§ 91. Выделение тепла и изменение объема при растворении
- •§ 92. Растворы сильных электролитов
- •§ 93. Смесь идеальных газов
- •§ 94. Смесь изотопов
- •§ 95. Давление пара над концентрированным раствором
- •§ 96. Термодинамические неравенства в растворах
- •§ 97. Кривые равновесия
- •§ 98. Примеры диаграмм состояния
- •§ 99. Пересечение особых кривых поверхности равновесия
- •§ 100. Газ и жидкость
- •Глава X
- •§ 101. Условие химического равновесия
- •§ 102. Закон действующих масс
- •§ 103. Теплота реакции
- •§ 104. Ионизационное равновесие
- •§ 105. Равновесие по отношению к образованию пар
- •Глава XI
- •§ 106. Уравнение состояния вещества при больших плотностях
- •§ 107. Равновесие тел с большой массой
- •§ 108. Энергия гравитирующего тела
- •§ 109. Равновесие нейтронной сферы
- •Глава XII
- •§110. Распределение Гаусса
- •§ 110] Распределение гаусса 365
- •§ 111. Распределение Гаусса для нескольких величин
- •§ 113. Флуктуации в идеальном газе
- •§114. Формула Пуассона
- •§ 115. Флуктуации в растворах
- •§ 116. Пространственная корреляция флуктуации плотности
- •§ 117. Корреляция флуктуации плотности в вырожденном газе
- •§ 118. Корреляция флуктуации во времени
- •§ 119. Временная корреляция флуктуации нескольких величин
- •§ 120. Симметрия кинетических коэффициентов
- •§ 121. Диссипативная функция
- •§ 122. Спектральное разложение флуктуации
- •§ 123. Обобщенная восприимчивость
- •§ 123] Обобщенная восприимчивость 411
- •§ 124. Флуктуационно-диссипационная теорема
- •§ 125. Флуктуационно-диссипационная теорема для нескольких величин
- •§ 126. Операторное выражение обобщенной восприимчивости
- •§ 127. Флуктуации изгиба длинных молекул
- •Глава XIII
- •§ 128. Элементы симметрии кристаллической решетки
- •§ 129. Решетка Бравэ
- •§ 130. Кристаллические системы
- •§ 131. Кристаллические классы
- •§ 132. Пространственные группы
- •§ 133. Обратная решетка
- •§ 134. Неприводимые представления пространственных групп
- •§ 135. Симметрия относительно обращения времени
- •§ 136. Свойства симметрии нормальных колебаний кристаллической решетки
- •§ 137. Структуры с одно- и двумерной периодичностью
- •§ 138. Корреляционная функция в двумерных системах
- •§ 139. Симметрия по ориентации молекул
- •§ 140. Нематические и холестерические жидкие кристаллы
- •§ 141. Флуктуации в жидких кристаллах
- •Глава XIV
- •§ 142. Фазовые переходы второго рода
- •§ 143. Скачок теплоемкости
- •§ 144. Влияние внешнего поля на фазовый переход
- •§ 145. Изменение симметрии при фазовом переходе второго рода
- •§ 146. Флуктуации параметра порядка
- •§ 147. Эффективный гамильтониан
- •§ 148. Критические индексы
- •§ 149. Масштабная инвариантность
- •§ 150. Изолированные и критические точки непрерывного перехода
- •§ 151. Фазовый переход второго рода в двумерной решетке
- •§ 153. Флуктуационная теория критической точки
- •Глава XV
- •§ 154. Поверхностное натяжение
- •§ 155. Поверхностное натяжение кристаллов
- •§ 156. Поверхностное давление
- •§ 157. Поверхностное натяжение растворов
- •§ 158. Поверхностное натяжение растворов сильных электролитов
- •§ 159. Адсорбция
- •§ 160. Смачивание
- •§ 161. Краевой угол
- •§ 162. Образование зародышей при фазовых переходах
- •§ 1Б2] образование зародышей при фазовых переходах 581
- •§ 163. Невозможность существования фаз в одномерных системах
§ 65. Твердые тела при высоких температурах
Обратимся теперь к обратному предельному случаю высоких температур (по порядку величины T^>kuja, а—постоянная решетки). В этом случае можно положить
и формула (64,1) приобретает вид
F = Ne0 + T £ln^-. (65,1)
а
В сумме по а всего 3Nv слагаемых; вводим «среднюю геометрическую» частоту со согласно определению
1пй= з^^1псоа. (65,2)
а
Тогда для свободной энергии твердого тела получим формулу
F = Ne0—3NvTlnT + 3NvTlnnb. (65,3)
Средняя частота со, как и и, есть некоторая функция от плотности: co = co(V/JV).
dFi
Из (65,3) находим энергию тела E = F—Т-^:
E = Ne0 + 3NvT. (65,4)
х)
Напомним, что при наличии «электронных
степеней свободы» эти формулы
определяют лишь решеточную часть
термодинамических величин. Впрочем,
даже при наличии электронной части (у
металлов) последняя начинает сказываться,
например, в теплоемкости лишь при
температурах в несколько градусов.
C = Nc = 3Nv, (65,5)
где c = 3v — теплоемкость на одну ячейку. Мы снова пишем теплоемкость просто как С, имея в виду, что у твердых тел разница между Ср и Cv вообще незначительна (см. конец § 67).
Таким образом, при достаточно высоких температурах теплоемкость твердого тела постоянна, причем зависит только от числа атомов в теле. В частности, должна быть одинакова и равна 3 атомная теплоемкость различных элементов с простой кристаллической решеткой (v=l)—так называемый закон Дюлонга и Пши. При обычных температурах этот закон удовлетворительно соблюдается для многих элементов. Формула (65,5) выполняется при высоких температурах и для ряда простых соединений; для сложных же соединений это предельное значение теплоемкости, вообще говоря, фактически не достигается (плавление вещества или его разложение наступают раньше).
Подставляя (65,5) в (65,3) и (65,4), напишем свободную энергию и энергию твердого тела в виде
F = Ne0—NcTlnT + NcTlnka, (65,6)
E = Ne0 + NcT. (65,7)
Энтропия S=—dF/dT равна
S = NclnT — Nc\n^~-. (65,8)
Формулу (65,1) можно, конечно, вывести и непосредственно из классической статистики, исходя из общей формулы (31,5):
F=— Г1п$'е-£с. ")/Tdr. (65,9)
х)
Как это надо было делать в случае газа,
где интегрирование по координатам
каждой частицы производилось по всему
объему (ср. конец § 31).
Подставляем в (65,9) энергию, выраженную через координаты и импульсы нормальных колебаний:
а
a dT пишем в виде
Тогда интеграл разбивается на произведение 3Nv одинаковых интегралов вида
— со
в результате чего получается формула (65,1) (ввиду быстрой сходимости интеграла интегрирование по dqa можно распространить от —оо до +°°)-
При достаточно высоких температурах (если только твердое тело при этих температурах еще не плавится или не разлагается) могут стать заметными эффекты ангармоничности колебаний атомов. Характер влияния этих эффектов на термодинамические величины тела можно выяснить следующим образом (ср. аналогичные вычисления для газов в §49). При учете следующих (после квадратичных) членов разложения потенциальной энергии колебаний по степеням qa будем иметь
Е(р, q) = f, (Р,Ч) + Ш + Ш+---,
где /2 (р, q) обозначает гармоническое выражение (65,10) (квадратичная форма qa и ра), a fs(q), /4(<7), .-. — однородные формы всех координат qa соответственно третьей, четвертой и т. д. степеней. Делая в статистическом интеграле в (65,9) подстановку
qa = q'aVT, pa = PaVT, получим Z= $V£<". ")/Tdr =
= T»»* ехр {-ft (p', q')-VTf, (q')-Th {q')~ • • ■ } <*Г.
Мы видим, что при разложении подынтегрального выражения по степеням температуры все нечетные степени У~Т войдут умноженными на нечетные функции координат, обращающиеся в нуль при интегрировании по координатам. Поэтому Z представится в виде ряда Z = Z0JrTZ1-\-T2Z2Jr ..., содержащего лишь целые степени температуры. При подстановке в (65,9) первый поправочный член к свободной энергии будет, следовательно, иметь вид
FaHr = AT*, (65,11)
т. е. пропорционален квадрату температуры. В теплоемкости он приводит к поправке, пропорциональной первой степени температуры1). Подчеркнем, что разложение, о котором здесь идет речь, есть по существу разложение по степеням всегда малого отношения 77е0, а, конечно, не по степеням отношения Г/Йсо, которое в данном случае велико.
Задачи
1. Определить максимальную работу, которую можно получить от двух одинаковых твердых тел (с температурами Т1 и Т2) при выравнивании их темпе- ратур.
Решение аналогично решению задачи 12 § 43. Находим
\RU™=Nc{YT1-VTi)\
2. Определить максимальную работу, которую можно получить с помощью твердого тела при охлаждении его от температуры Т до температуры среды Т0 (при неизменном объеме).
Решение. По формуле (20,3) найдем
I R Imax = Nc {Т-Т0) + NcTu In у0.