
- •Часть 1
- •Глава I
- •§ 1. Статистическое распределение
- •§ 2. Статистическая независимость
- •§ 3. Теорема Лиувилля
- •§ 4. Роль энергии
- •§ 5. Статистическая матрица
- •§ 6. Статистическое распределение в квантовой статистике
- •§ 7. Энтропия
- •§ 8. Закон возрастания энтропии
- •Глава II
- •§ 9. Температура
- •§10. Макроскопическое движение
- •1) Производную по вектору надо понимать как вектор, составляющие которого равны производным по составляющим вектора, по которому произ- водится дифференцирование.
- •§11. Адиабатический процесс
- •§ 12. Давление
- •§ 13. Работа и количество тепла
- •§ 14. Тепловая функция
- •§ 15. Свободная энергия н термодинамический потенциал
- •§16. Соотношения между производными термодинамических
- •§ 16] Производные термодинамических величин
- •§ 17. Термодинамическая шкала температуры
- •§ 18. Процесс Джоуля — Томсона
- •§ 19. Максимальная работа
- •§ 20. Максимальная работа, производимая телом, находящимся во внешней среде
- •§ 20] Тело, находящееся во внешней среде 77
- •§ 21. Термодинамические неравенства
- •§ 22. Принцип Ле-Шателье
- •§ 23. Теорема Нернста
- •§ 24. Зависимость термодинамических величин от числа частиц
- •§ 25. Равновесие тела во внешнем поле
- •§ 26. Вращающиеся тела
- •§ 27. Термодинамические соотношения в релятивистской области
- •Глава III
- •§ 28. Распределение Гиббса
- •§ 29. Распределение Максвелла
- •§ 30. Распределение вероятностей для осциллятора
- •§ 31. Свободная энергия в распределении Гиббса
- •§ 32. Термодинамическая теория возмущений
- •§ 33. Разложение по степеням %
- •§ 34. Распределение Гиббса для вращающихся тел
- •§ 35. Распределение Гиббса с переменным числом частиц
- •§ 36. Вывод термодинамических соотношений из распределения Гиббса
- •Глава IV
- •§ 37. Распределение Больцмана
- •§ 38. Распределение Больцмана в классической статистике
- •§ 39. Столкновения молекул
- •§ 40. Неравновесный идеальный газ
- •§ 41. Свободная энергия больцмановского идеального газа
- •§ 42. Уравнение состояния идеального газа
- •§ 43. Идеальный газ с постоянной теплоемкостью
- •15. Определить максимальную работу, которую можно получить с по- мощью идеального газа при охлаждении от температуры т до температуры среды т0 при постоянном объеме.
- •§ 44. Закон равнораспределения
- •§ 43. Одноатомный идеальный газ
- •§ 46. Одноатомный газ. Влияние электронного момента
- •§ 47. Двухатомный газ с молекулами из различных атомов. Вращение молекул
- •§ 48. Двухатомный газ с молекулами из одинаковых атомов. Вращение молекул
- •§ 49. Двухатомный газ. Колебания атомов
- •§ 50. Двухатомный газ. Влияние электронного момента
- •§51] Многоатомный газ 169
- •§ 51. Многоатомный газ
- •§ 52. Магнетизм газов
- •Глава V
- •§ 53. Распределение Ферми
- •§ 54. Распределение Бозе
- •§ 55. Неравновесные ферми- и бозе-газы
- •§ 56. Ферми- и бозе-газы элементарных частиц
- •§ 56] Ферми- и бозе-газы элементарных частиц 185
- •§ 57. Вырожденный электронный газ
- •§ 58. Теплоемкость вырожденного электронного газа
- •§ 59. Магнетизм электронного газа. Слабые поля
- •§ 60. Магнетизм электронного газа. Сильные поля
- •§ 61. Релятивистский вырожденный электронный газ
- •§ 62. Вырожденный бозе-газ
- •§ 63. Черное излучение
- •Глава VI
- •§ 64. Твердые тела при низких температурах
- •§ 65. Твердые тела при высоких температурах
- •§ 66. Интерполяционная формула Дебая
- •§ 67. Тепловое расширение твердых тел
- •§ 68. Сильно анизотропные кристаллы
- •§ 69. Колебания кристаллической решетки
- •§ 70. Плотность числа колебаний
- •§ 71. Фононы.
- •§ 72. Операторы рождения и уничтожения фононов
- •§ 73. Отрицательные температуры
- •Глава VII
- •§ 74. Отклонение газов от идеальности
- •§ 75. Разложение по степеням плотности
- •§ 76. Формула ван-дер Ваальса
- •§ 77. Связь вириального коэффициента с амплитудой рассеяния
- •§ 78. Термодинамические величины классической плазмы
- •§ 79. Метод корреляционных функций
- •§ 80. Термодинамические величины вырожденной плазмы
- •1) В этом случае
- •Глава VIII
- •§ 81. Условия равновесия фаз
- •§ 82. Формула Клапейрона — Клаузиуса
- •§ 83. Критическая точка
- •§ 84. Закон соответственных состояний
- •Глава IX
- •§ 85. Системы с различными частицами
- •§ 86. Правило фаз
- •§ 87. Слабые растворы
- •§ 88. Осмотическое давление
- •§ 89. Соприкосновение фаз растворителя
- •§ 90. Равновесие по отношению к растворенному веществу
- •§ 91. Выделение тепла и изменение объема при растворении
- •§ 92. Растворы сильных электролитов
- •§ 93. Смесь идеальных газов
- •§ 94. Смесь изотопов
- •§ 95. Давление пара над концентрированным раствором
- •§ 96. Термодинамические неравенства в растворах
- •§ 97. Кривые равновесия
- •§ 98. Примеры диаграмм состояния
- •§ 99. Пересечение особых кривых поверхности равновесия
- •§ 100. Газ и жидкость
- •Глава X
- •§ 101. Условие химического равновесия
- •§ 102. Закон действующих масс
- •§ 103. Теплота реакции
- •§ 104. Ионизационное равновесие
- •§ 105. Равновесие по отношению к образованию пар
- •Глава XI
- •§ 106. Уравнение состояния вещества при больших плотностях
- •§ 107. Равновесие тел с большой массой
- •§ 108. Энергия гравитирующего тела
- •§ 109. Равновесие нейтронной сферы
- •Глава XII
- •§110. Распределение Гаусса
- •§ 110] Распределение гаусса 365
- •§ 111. Распределение Гаусса для нескольких величин
- •§ 113. Флуктуации в идеальном газе
- •§114. Формула Пуассона
- •§ 115. Флуктуации в растворах
- •§ 116. Пространственная корреляция флуктуации плотности
- •§ 117. Корреляция флуктуации плотности в вырожденном газе
- •§ 118. Корреляция флуктуации во времени
- •§ 119. Временная корреляция флуктуации нескольких величин
- •§ 120. Симметрия кинетических коэффициентов
- •§ 121. Диссипативная функция
- •§ 122. Спектральное разложение флуктуации
- •§ 123. Обобщенная восприимчивость
- •§ 123] Обобщенная восприимчивость 411
- •§ 124. Флуктуационно-диссипационная теорема
- •§ 125. Флуктуационно-диссипационная теорема для нескольких величин
- •§ 126. Операторное выражение обобщенной восприимчивости
- •§ 127. Флуктуации изгиба длинных молекул
- •Глава XIII
- •§ 128. Элементы симметрии кристаллической решетки
- •§ 129. Решетка Бравэ
- •§ 130. Кристаллические системы
- •§ 131. Кристаллические классы
- •§ 132. Пространственные группы
- •§ 133. Обратная решетка
- •§ 134. Неприводимые представления пространственных групп
- •§ 135. Симметрия относительно обращения времени
- •§ 136. Свойства симметрии нормальных колебаний кристаллической решетки
- •§ 137. Структуры с одно- и двумерной периодичностью
- •§ 138. Корреляционная функция в двумерных системах
- •§ 139. Симметрия по ориентации молекул
- •§ 140. Нематические и холестерические жидкие кристаллы
- •§ 141. Флуктуации в жидких кристаллах
- •Глава XIV
- •§ 142. Фазовые переходы второго рода
- •§ 143. Скачок теплоемкости
- •§ 144. Влияние внешнего поля на фазовый переход
- •§ 145. Изменение симметрии при фазовом переходе второго рода
- •§ 146. Флуктуации параметра порядка
- •§ 147. Эффективный гамильтониан
- •§ 148. Критические индексы
- •§ 149. Масштабная инвариантность
- •§ 150. Изолированные и критические точки непрерывного перехода
- •§ 151. Фазовый переход второго рода в двумерной решетке
- •§ 153. Флуктуационная теория критической точки
- •Глава XV
- •§ 154. Поверхностное натяжение
- •§ 155. Поверхностное натяжение кристаллов
- •§ 156. Поверхностное давление
- •§ 157. Поверхностное натяжение растворов
- •§ 158. Поверхностное натяжение растворов сильных электролитов
- •§ 159. Адсорбция
- •§ 160. Смачивание
- •§ 161. Краевой угол
- •§ 162. Образование зародышей при фазовых переходах
- •§ 1Б2] образование зародышей при фазовых переходах 581
- •§ 163. Невозможность существования фаз в одномерных системах
§ 56. Ферми- и бозе-газы элементарных частиц
Рассмотрим газ, состоящий из элементарных частиц, или частиц, которые в данных условиях могут рассматриваться как элементарные. Как уже было в свое время указано, к обычным атомным или молекулярным газам распределения Ферми или Бозе вообще не приходится применять, так как эти газы фактически всегда с достаточной точностью описываются распределением Больцмана.
Все выводимые в этом параграфе формулы имеют совершенно аналогичный вид для обеих статистик Ферми и Бозе, отличаясь лишь одним знаком. Ниже везде верхний знак соответствует статистике Ферми, а нижний—статистике Бозе.
Энергия элементарной частицы сводится к кинетической энергии ее поступательного движения, которое всегда квазиклассично. Поэтому имеем
е = ^ (pl+Pl + Pl), (56,1)
а в функции распределения переходим обычным образом к распределению по фазовому пространству частицы. При этом надо иметь в виду, что при данном значении импульса состояние частицы определяется также направлением ее спина. Поэтому число частиц в элементе фазового пространства dpxdpydpzdV получится умножением распределения (53,2) или (54,2) на
где g=2s-\-\, s—спин частицы, т.е. равно
Интегрируя по dV (что сводится к замене dV на полный объм V газа), получим распределение по компонентам импульса частиц, а переходя к сферическим координатам в пространстве импульсов и интегрируя по углам, найдем распределение по абсолютной величине импульса
dNp=
.
ff*?,T г, (56,3)
(где £ = p2/2m), или распределение по энергии
,,, gVm3/2 Vide /сс
Эти формулы заменяют классическое распределение Максвелла. Интегрируя (56,4) по de, получим полное число частиц в газе
= gVm3li Г У в de
21/алФ J **-Мт± 1 '
Вводя новую переменную интегрирования г/Т = г, перепишем это равенство в виде
N g(mT)*<'* р VTdz о
Эта формула определяет в неявном виде химический потенциал газа р- как функцию от температуры Т и плотности N/V..
§ 56] Ферми- и бозе-газы элементарных частиц 185
Совершая такой же переход от суммирования к интегрированию в формулах (53,4), (54,4), получим следующее выражение для потенциала й:
3/2 °°
Q
=
op
Vf.f!
[У~г
In
(1
± e^-^T)de.
о
Интегрируя по частям, находим
п 2 gVms/i } е3/а йъ /KR R.
У=~Т 21/«яФ j ^-ц)/т±1 • (5ь-ь)
Это выражение совпадает с точностью до множителя —2/3 с полной энергией газа, равной
с Г jh gFms/2 Г e3/2de ,-с „
Имея также в виду, что Q = — PV, получаем, таким образом, следующее соотношение:
PV=jE. (56,8)
Будучи точным, это соотношение должно выполняться и в предельном случае больцмановского газа; действительно, подставляя больцмановское значение Е = 3NT/2, получим уравнение Клапейрона.
Из формулы (56,6), сделав подстановку 8/7' = г, найдем, что
Q = —PV = VT*'*f (f) , (56,9)
где /—функция от одного аргумента, т. е. Q/V есть однородная функция (I и Г порядка 5/21). Поэтому
V * V\dT)v,» V ~~ 7 1.3(1 У г, v
— однородные функции ц и Т порядка 3/2, а их отношение S/Л7-— однородная функция нулевого порядка: S/N = ц> (ц/Т). Отсюда видно, что при адиабатическом процессе (S = const) остается
E
=
N^+TS-PV^-^-T^
+
Q,
постоянным отношение ii/T, а поскольку N/VT3/t тоже есть функ- ция только от р./7\ то и
= const. (56,10)
Тогда из (56,9) следует, что
рум = const, (56,11)
а также и Ts/2/P = const. Эти равенства совпадают с уравнением адиабаты Пуассона (43,9) для обычного одноатомного газа. Подчеркнем, однако, что показатели степени в формулах (56,10—11) не связаны теперь с отношением теплоемкостей (поскольку несправедливы соотношения cp/cv = 5/3 и ср—cv= 1). Формула (56,6), переписанная в виде
р- Шз \ (56,12)
вместе с формулой (56,5) определяют в параметрическом виде (параметром является р.) уравнение состояния газа, т. е. связь между Р, V и Т. В предельном случае больцмановского газа (чему соответствует е^'Т<^.1) из этих формул получается, как и должно было быть, уравнение Клапейрона. Покажем это, вычислив одновременно также и первый поправочный член разложения в уравнении состояния.
При е^т<^. 1 разлагаем подынтегральное выражение в (56,12) в ряд по степеням и получаем, сохраняя два первых
члена разложения,
Подставляя это в (56,12), имеем
"~ FV~ (2я)"**» В V+ 2»/» 6 J'
Если сохранить лишь первый член разложения, то получим в точности больцмановское значение химического потенциала одноатомного газа (формула (46,1а)). Следующий же член дает искомую поправку, так что можно написать:
Но малые добавки ко всем термодинамическим потенциалам (выраженные через соответствующие переменные, см. (24,16)),
одинаковы. Поэтому, выразив поправку в Q через Т и V (что можно сделать с той же точностью с помощью больцмановских выражений), мы получим поправку к свободной энергии:
дЗ/2 д^з
/7 = ^больц±-Т^-]/г1/2тз/2- (56.14)
1 + -
(56,15)
3/2
PV^NT
2g V(mT)
Условие малости поправочного члена в этой формуле совпадает, естественно, с условием (45,6) применимости статистики Больцмана. Таким образом, отклонения свойств идеального газа от классических, возникающие при понижении температуры при заданной плотности (как говорят, при начинающемся его вырождении), ведут в статистике Ферми к увеличению давления по сравнению с его значением в обычном газе; можно сказать, что квантовомеханические обменные эффекты приводят в этом случае к появлению некоторого дополнительного эффективного отталкивания между частицами.
В статистике же Бозе величина давления газа отклоняется в обратную сторону—в сторону уменьшения по сравнению с классическим значением; можно сказать, что здесь появляется некоторое эффективное притяжение между частицами.