
- •Часть 1
- •Глава I
- •§ 1. Статистическое распределение
- •§ 2. Статистическая независимость
- •§ 3. Теорема Лиувилля
- •§ 4. Роль энергии
- •§ 5. Статистическая матрица
- •§ 6. Статистическое распределение в квантовой статистике
- •§ 7. Энтропия
- •§ 8. Закон возрастания энтропии
- •Глава II
- •§ 9. Температура
- •§10. Макроскопическое движение
- •1) Производную по вектору надо понимать как вектор, составляющие которого равны производным по составляющим вектора, по которому произ- водится дифференцирование.
- •§11. Адиабатический процесс
- •§ 12. Давление
- •§ 13. Работа и количество тепла
- •§ 14. Тепловая функция
- •§ 15. Свободная энергия н термодинамический потенциал
- •§16. Соотношения между производными термодинамических
- •§ 16] Производные термодинамических величин
- •§ 17. Термодинамическая шкала температуры
- •§ 18. Процесс Джоуля — Томсона
- •§ 19. Максимальная работа
- •§ 20. Максимальная работа, производимая телом, находящимся во внешней среде
- •§ 20] Тело, находящееся во внешней среде 77
- •§ 21. Термодинамические неравенства
- •§ 22. Принцип Ле-Шателье
- •§ 23. Теорема Нернста
- •§ 24. Зависимость термодинамических величин от числа частиц
- •§ 25. Равновесие тела во внешнем поле
- •§ 26. Вращающиеся тела
- •§ 27. Термодинамические соотношения в релятивистской области
- •Глава III
- •§ 28. Распределение Гиббса
- •§ 29. Распределение Максвелла
- •§ 30. Распределение вероятностей для осциллятора
- •§ 31. Свободная энергия в распределении Гиббса
- •§ 32. Термодинамическая теория возмущений
- •§ 33. Разложение по степеням %
- •§ 34. Распределение Гиббса для вращающихся тел
- •§ 35. Распределение Гиббса с переменным числом частиц
- •§ 36. Вывод термодинамических соотношений из распределения Гиббса
- •Глава IV
- •§ 37. Распределение Больцмана
- •§ 38. Распределение Больцмана в классической статистике
- •§ 39. Столкновения молекул
- •§ 40. Неравновесный идеальный газ
- •§ 41. Свободная энергия больцмановского идеального газа
- •§ 42. Уравнение состояния идеального газа
- •§ 43. Идеальный газ с постоянной теплоемкостью
- •15. Определить максимальную работу, которую можно получить с по- мощью идеального газа при охлаждении от температуры т до температуры среды т0 при постоянном объеме.
- •§ 44. Закон равнораспределения
- •§ 43. Одноатомный идеальный газ
- •§ 46. Одноатомный газ. Влияние электронного момента
- •§ 47. Двухатомный газ с молекулами из различных атомов. Вращение молекул
- •§ 48. Двухатомный газ с молекулами из одинаковых атомов. Вращение молекул
- •§ 49. Двухатомный газ. Колебания атомов
- •§ 50. Двухатомный газ. Влияние электронного момента
- •§51] Многоатомный газ 169
- •§ 51. Многоатомный газ
- •§ 52. Магнетизм газов
- •Глава V
- •§ 53. Распределение Ферми
- •§ 54. Распределение Бозе
- •§ 55. Неравновесные ферми- и бозе-газы
- •§ 56. Ферми- и бозе-газы элементарных частиц
- •§ 56] Ферми- и бозе-газы элементарных частиц 185
- •§ 57. Вырожденный электронный газ
- •§ 58. Теплоемкость вырожденного электронного газа
- •§ 59. Магнетизм электронного газа. Слабые поля
- •§ 60. Магнетизм электронного газа. Сильные поля
- •§ 61. Релятивистский вырожденный электронный газ
- •§ 62. Вырожденный бозе-газ
- •§ 63. Черное излучение
- •Глава VI
- •§ 64. Твердые тела при низких температурах
- •§ 65. Твердые тела при высоких температурах
- •§ 66. Интерполяционная формула Дебая
- •§ 67. Тепловое расширение твердых тел
- •§ 68. Сильно анизотропные кристаллы
- •§ 69. Колебания кристаллической решетки
- •§ 70. Плотность числа колебаний
- •§ 71. Фононы.
- •§ 72. Операторы рождения и уничтожения фононов
- •§ 73. Отрицательные температуры
- •Глава VII
- •§ 74. Отклонение газов от идеальности
- •§ 75. Разложение по степеням плотности
- •§ 76. Формула ван-дер Ваальса
- •§ 77. Связь вириального коэффициента с амплитудой рассеяния
- •§ 78. Термодинамические величины классической плазмы
- •§ 79. Метод корреляционных функций
- •§ 80. Термодинамические величины вырожденной плазмы
- •1) В этом случае
- •Глава VIII
- •§ 81. Условия равновесия фаз
- •§ 82. Формула Клапейрона — Клаузиуса
- •§ 83. Критическая точка
- •§ 84. Закон соответственных состояний
- •Глава IX
- •§ 85. Системы с различными частицами
- •§ 86. Правило фаз
- •§ 87. Слабые растворы
- •§ 88. Осмотическое давление
- •§ 89. Соприкосновение фаз растворителя
- •§ 90. Равновесие по отношению к растворенному веществу
- •§ 91. Выделение тепла и изменение объема при растворении
- •§ 92. Растворы сильных электролитов
- •§ 93. Смесь идеальных газов
- •§ 94. Смесь изотопов
- •§ 95. Давление пара над концентрированным раствором
- •§ 96. Термодинамические неравенства в растворах
- •§ 97. Кривые равновесия
- •§ 98. Примеры диаграмм состояния
- •§ 99. Пересечение особых кривых поверхности равновесия
- •§ 100. Газ и жидкость
- •Глава X
- •§ 101. Условие химического равновесия
- •§ 102. Закон действующих масс
- •§ 103. Теплота реакции
- •§ 104. Ионизационное равновесие
- •§ 105. Равновесие по отношению к образованию пар
- •Глава XI
- •§ 106. Уравнение состояния вещества при больших плотностях
- •§ 107. Равновесие тел с большой массой
- •§ 108. Энергия гравитирующего тела
- •§ 109. Равновесие нейтронной сферы
- •Глава XII
- •§110. Распределение Гаусса
- •§ 110] Распределение гаусса 365
- •§ 111. Распределение Гаусса для нескольких величин
- •§ 113. Флуктуации в идеальном газе
- •§114. Формула Пуассона
- •§ 115. Флуктуации в растворах
- •§ 116. Пространственная корреляция флуктуации плотности
- •§ 117. Корреляция флуктуации плотности в вырожденном газе
- •§ 118. Корреляция флуктуации во времени
- •§ 119. Временная корреляция флуктуации нескольких величин
- •§ 120. Симметрия кинетических коэффициентов
- •§ 121. Диссипативная функция
- •§ 122. Спектральное разложение флуктуации
- •§ 123. Обобщенная восприимчивость
- •§ 123] Обобщенная восприимчивость 411
- •§ 124. Флуктуационно-диссипационная теорема
- •§ 125. Флуктуационно-диссипационная теорема для нескольких величин
- •§ 126. Операторное выражение обобщенной восприимчивости
- •§ 127. Флуктуации изгиба длинных молекул
- •Глава XIII
- •§ 128. Элементы симметрии кристаллической решетки
- •§ 129. Решетка Бравэ
- •§ 130. Кристаллические системы
- •§ 131. Кристаллические классы
- •§ 132. Пространственные группы
- •§ 133. Обратная решетка
- •§ 134. Неприводимые представления пространственных групп
- •§ 135. Симметрия относительно обращения времени
- •§ 136. Свойства симметрии нормальных колебаний кристаллической решетки
- •§ 137. Структуры с одно- и двумерной периодичностью
- •§ 138. Корреляционная функция в двумерных системах
- •§ 139. Симметрия по ориентации молекул
- •§ 140. Нематические и холестерические жидкие кристаллы
- •§ 141. Флуктуации в жидких кристаллах
- •Глава XIV
- •§ 142. Фазовые переходы второго рода
- •§ 143. Скачок теплоемкости
- •§ 144. Влияние внешнего поля на фазовый переход
- •§ 145. Изменение симметрии при фазовом переходе второго рода
- •§ 146. Флуктуации параметра порядка
- •§ 147. Эффективный гамильтониан
- •§ 148. Критические индексы
- •§ 149. Масштабная инвариантность
- •§ 150. Изолированные и критические точки непрерывного перехода
- •§ 151. Фазовый переход второго рода в двумерной решетке
- •§ 153. Флуктуационная теория критической точки
- •Глава XV
- •§ 154. Поверхностное натяжение
- •§ 155. Поверхностное натяжение кристаллов
- •§ 156. Поверхностное давление
- •§ 157. Поверхностное натяжение растворов
- •§ 158. Поверхностное натяжение растворов сильных электролитов
- •§ 159. Адсорбция
- •§ 160. Смачивание
- •§ 161. Краевой угол
- •§ 162. Образование зародышей при фазовых переходах
- •§ 1Б2] образование зародышей при фазовых переходах 581
- •§ 163. Невозможность существования фаз в одномерных системах
§ 55. Неравновесные ферми- и бозе-газы
Подобно тому, как это было сделано в § 40, можно вычислить энтропию также и неравновесных ферми- и бозе-газов, а из условия максимальности энтропии снова получить функции распределения Ферми и Бозе.
В случае Ферми в каждом из квантовых состояний может находиться не более одной частицы, но числа N;- не малы, а, вообще говоря, того же порядка величины, что и числа Gy- (все обозначения—те же, что и в § 40).
Число возможных способов распределения Ny- одинаковых частиц по Gj состояниям (не более чем по одной в каждом) есть не что иное, как число способов, которыми можно выбрать N j из Gj состояний, т. е. число сочетаний из Gy- элементов по Nj. Таким образом, имеем
^1= Л'у! (Gj — Nj)l' (55'!)
Логарифмируя это выражение и воспользовавшись для логарифмов всех трех факториалов формулой (40,3), найдем
S = 2 {Gj In Gj—Nj In Nj-(Gj-Nj) In (G,-Nj)). (55,2)
Вводя снова средние числа заполнения квантовых состояний /г;- = = Nj/Gj, получим окончательно следующее выражение для энтропии неравновесного ферми-газа:
S = — ^ Gj [7ij In Hj + (1 —nj) In (1 — n,)]. (55,3)
Из условия максимальности этого выражения по уравнениям (40,8) легко найти, что равновесное распределение определяется формулой
1
я,-
7 в«+рв/+1 •
т. е., как и следовало, совпадает с распределением Ферми.
Наконец, в случае статистики Бозе в каждом квантовом состоянии может находиться любое число частиц, так что статистический вес АГу есть число всех способов, которыми можно распределить Nj частиц по Gy- состояниям. Это число равно1)
{Gj
+
Nj-l)\
ДГ;=
{Gj-l)\Nj\
• (5-5>4>
Логарифмируя это выражение и пренебрегая при этом единицей по сравнению с очень большими числами Gj-\-Nj и Gj, получим
i)
Речь
идет о числе способов размещения,
скажем, Nj
одинаковых
шаров по Gj
ящикам.
Изобразим шары в виде ряда последовательно
расположенных N
j
точек;
ящики перенумеруем и изобразим условно
границы между ними
Gj—l
вертикальными
черточками, расположенными в ряду
точек. Так, рисунок
изображает
10 шаров, размещенных в пяти ящиках: 1
шар в первом ящике, 3—во втором, 0 — в
третьем, 4—в четвертом и 2 —в пятом.
Всего число мест (на которых находятся
точки или черточки) в этом ряду есть
Gj-j-Nj—1.
Искомое число размещений шаров по
ящикам есть число способов, которыми
можно выбрать Gj—1
мест для черточек, т. е. число сочетаний
из Nj-j-Gj—1
элементов по Gj—1,
откуда и получается приведенная в
тексте величина.
Вводя числа п}, напишем энтропию неравновесного бозе-газа в виде S = £ Gj[(l + h~;) In (1 + n,) — ny In nj[. (55,6)
Легко убедиться в том, что условие максимальности этого выражения действительно приводит к распределению Бозе.
Обе формулы (55,2) и (55,5) для энтропии в предельном случае Nf<^.Gf переходят, естественно, в больцмановскую формулу (40,4). В больцмановское выражение (40,2) переходят также и статистические веса (55,1) и (55,4) статистик Ферми и Бозе; для этого надо положить
Gj\ »(Gf—Nj)\ G?', (Gj + Nf-1)! » (Gj-1)! Gp.
Необходимо, однако, иметь в виду, что такой переход в статистических весах означает пренебрежение в них членами порядка N)IG,; которые сами по себе, вообще говоря, не малы; но при логарифмировании эти члены дают в энтропии поправку малого относительного порядка Nj/Gf.
Наконец, выпишем формулу для энтропии бозе-газа в важном предельном случае, когда число частиц в каждом квантовом состоянии велико (так что A/;Sg>G,-, «у-^> 1). Как известно из квантовой механики, этот случай соответствует классической волновой картине поля. Статистический вес (55,4) приобретает вид
</-
АГ/ = <5рТД. (55,7)
а энтропия
S = £Gy ln-^A (55,8) Мы используем эту формулу в дальнейшем, в § 71.