
- •Часть 1
- •Глава I
- •§ 1. Статистическое распределение
- •§ 2. Статистическая независимость
- •§ 3. Теорема Лиувилля
- •§ 4. Роль энергии
- •§ 5. Статистическая матрица
- •§ 6. Статистическое распределение в квантовой статистике
- •§ 7. Энтропия
- •§ 8. Закон возрастания энтропии
- •Глава II
- •§ 9. Температура
- •§10. Макроскопическое движение
- •1) Производную по вектору надо понимать как вектор, составляющие которого равны производным по составляющим вектора, по которому произ- водится дифференцирование.
- •§11. Адиабатический процесс
- •§ 12. Давление
- •§ 13. Работа и количество тепла
- •§ 14. Тепловая функция
- •§ 15. Свободная энергия н термодинамический потенциал
- •§16. Соотношения между производными термодинамических
- •§ 16] Производные термодинамических величин
- •§ 17. Термодинамическая шкала температуры
- •§ 18. Процесс Джоуля — Томсона
- •§ 19. Максимальная работа
- •§ 20. Максимальная работа, производимая телом, находящимся во внешней среде
- •§ 20] Тело, находящееся во внешней среде 77
- •§ 21. Термодинамические неравенства
- •§ 22. Принцип Ле-Шателье
- •§ 23. Теорема Нернста
- •§ 24. Зависимость термодинамических величин от числа частиц
- •§ 25. Равновесие тела во внешнем поле
- •§ 26. Вращающиеся тела
- •§ 27. Термодинамические соотношения в релятивистской области
- •Глава III
- •§ 28. Распределение Гиббса
- •§ 29. Распределение Максвелла
- •§ 30. Распределение вероятностей для осциллятора
- •§ 31. Свободная энергия в распределении Гиббса
- •§ 32. Термодинамическая теория возмущений
- •§ 33. Разложение по степеням %
- •§ 34. Распределение Гиббса для вращающихся тел
- •§ 35. Распределение Гиббса с переменным числом частиц
- •§ 36. Вывод термодинамических соотношений из распределения Гиббса
- •Глава IV
- •§ 37. Распределение Больцмана
- •§ 38. Распределение Больцмана в классической статистике
- •§ 39. Столкновения молекул
- •§ 40. Неравновесный идеальный газ
- •§ 41. Свободная энергия больцмановского идеального газа
- •§ 42. Уравнение состояния идеального газа
- •§ 43. Идеальный газ с постоянной теплоемкостью
- •15. Определить максимальную работу, которую можно получить с по- мощью идеального газа при охлаждении от температуры т до температуры среды т0 при постоянном объеме.
- •§ 44. Закон равнораспределения
- •§ 43. Одноатомный идеальный газ
- •§ 46. Одноатомный газ. Влияние электронного момента
- •§ 47. Двухатомный газ с молекулами из различных атомов. Вращение молекул
- •§ 48. Двухатомный газ с молекулами из одинаковых атомов. Вращение молекул
- •§ 49. Двухатомный газ. Колебания атомов
- •§ 50. Двухатомный газ. Влияние электронного момента
- •§51] Многоатомный газ 169
- •§ 51. Многоатомный газ
- •§ 52. Магнетизм газов
- •Глава V
- •§ 53. Распределение Ферми
- •§ 54. Распределение Бозе
- •§ 55. Неравновесные ферми- и бозе-газы
- •§ 56. Ферми- и бозе-газы элементарных частиц
- •§ 56] Ферми- и бозе-газы элементарных частиц 185
- •§ 57. Вырожденный электронный газ
- •§ 58. Теплоемкость вырожденного электронного газа
- •§ 59. Магнетизм электронного газа. Слабые поля
- •§ 60. Магнетизм электронного газа. Сильные поля
- •§ 61. Релятивистский вырожденный электронный газ
- •§ 62. Вырожденный бозе-газ
- •§ 63. Черное излучение
- •Глава VI
- •§ 64. Твердые тела при низких температурах
- •§ 65. Твердые тела при высоких температурах
- •§ 66. Интерполяционная формула Дебая
- •§ 67. Тепловое расширение твердых тел
- •§ 68. Сильно анизотропные кристаллы
- •§ 69. Колебания кристаллической решетки
- •§ 70. Плотность числа колебаний
- •§ 71. Фононы.
- •§ 72. Операторы рождения и уничтожения фононов
- •§ 73. Отрицательные температуры
- •Глава VII
- •§ 74. Отклонение газов от идеальности
- •§ 75. Разложение по степеням плотности
- •§ 76. Формула ван-дер Ваальса
- •§ 77. Связь вириального коэффициента с амплитудой рассеяния
- •§ 78. Термодинамические величины классической плазмы
- •§ 79. Метод корреляционных функций
- •§ 80. Термодинамические величины вырожденной плазмы
- •1) В этом случае
- •Глава VIII
- •§ 81. Условия равновесия фаз
- •§ 82. Формула Клапейрона — Клаузиуса
- •§ 83. Критическая точка
- •§ 84. Закон соответственных состояний
- •Глава IX
- •§ 85. Системы с различными частицами
- •§ 86. Правило фаз
- •§ 87. Слабые растворы
- •§ 88. Осмотическое давление
- •§ 89. Соприкосновение фаз растворителя
- •§ 90. Равновесие по отношению к растворенному веществу
- •§ 91. Выделение тепла и изменение объема при растворении
- •§ 92. Растворы сильных электролитов
- •§ 93. Смесь идеальных газов
- •§ 94. Смесь изотопов
- •§ 95. Давление пара над концентрированным раствором
- •§ 96. Термодинамические неравенства в растворах
- •§ 97. Кривые равновесия
- •§ 98. Примеры диаграмм состояния
- •§ 99. Пересечение особых кривых поверхности равновесия
- •§ 100. Газ и жидкость
- •Глава X
- •§ 101. Условие химического равновесия
- •§ 102. Закон действующих масс
- •§ 103. Теплота реакции
- •§ 104. Ионизационное равновесие
- •§ 105. Равновесие по отношению к образованию пар
- •Глава XI
- •§ 106. Уравнение состояния вещества при больших плотностях
- •§ 107. Равновесие тел с большой массой
- •§ 108. Энергия гравитирующего тела
- •§ 109. Равновесие нейтронной сферы
- •Глава XII
- •§110. Распределение Гаусса
- •§ 110] Распределение гаусса 365
- •§ 111. Распределение Гаусса для нескольких величин
- •§ 113. Флуктуации в идеальном газе
- •§114. Формула Пуассона
- •§ 115. Флуктуации в растворах
- •§ 116. Пространственная корреляция флуктуации плотности
- •§ 117. Корреляция флуктуации плотности в вырожденном газе
- •§ 118. Корреляция флуктуации во времени
- •§ 119. Временная корреляция флуктуации нескольких величин
- •§ 120. Симметрия кинетических коэффициентов
- •§ 121. Диссипативная функция
- •§ 122. Спектральное разложение флуктуации
- •§ 123. Обобщенная восприимчивость
- •§ 123] Обобщенная восприимчивость 411
- •§ 124. Флуктуационно-диссипационная теорема
- •§ 125. Флуктуационно-диссипационная теорема для нескольких величин
- •§ 126. Операторное выражение обобщенной восприимчивости
- •§ 127. Флуктуации изгиба длинных молекул
- •Глава XIII
- •§ 128. Элементы симметрии кристаллической решетки
- •§ 129. Решетка Бравэ
- •§ 130. Кристаллические системы
- •§ 131. Кристаллические классы
- •§ 132. Пространственные группы
- •§ 133. Обратная решетка
- •§ 134. Неприводимые представления пространственных групп
- •§ 135. Симметрия относительно обращения времени
- •§ 136. Свойства симметрии нормальных колебаний кристаллической решетки
- •§ 137. Структуры с одно- и двумерной периодичностью
- •§ 138. Корреляционная функция в двумерных системах
- •§ 139. Симметрия по ориентации молекул
- •§ 140. Нематические и холестерические жидкие кристаллы
- •§ 141. Флуктуации в жидких кристаллах
- •Глава XIV
- •§ 142. Фазовые переходы второго рода
- •§ 143. Скачок теплоемкости
- •§ 144. Влияние внешнего поля на фазовый переход
- •§ 145. Изменение симметрии при фазовом переходе второго рода
- •§ 146. Флуктуации параметра порядка
- •§ 147. Эффективный гамильтониан
- •§ 148. Критические индексы
- •§ 149. Масштабная инвариантность
- •§ 150. Изолированные и критические точки непрерывного перехода
- •§ 151. Фазовый переход второго рода в двумерной решетке
- •§ 153. Флуктуационная теория критической точки
- •Глава XV
- •§ 154. Поверхностное натяжение
- •§ 155. Поверхностное натяжение кристаллов
- •§ 156. Поверхностное давление
- •§ 157. Поверхностное натяжение растворов
- •§ 158. Поверхностное натяжение растворов сильных электролитов
- •§ 159. Адсорбция
- •§ 160. Смачивание
- •§ 161. Краевой угол
- •§ 162. Образование зародышей при фазовых переходах
- •§ 1Б2] образование зародышей при фазовых переходах 581
- •§ 163. Невозможность существования фаз в одномерных системах
РАСПРЕДЕЛЕНИЯ
ФЕРМИ И БОЗЕ
Если
температура идеального газа (при
заданной его плотности) достаточно
низка, то статистика Больцмана становится
неприменимой, и должна быть построена
другая статистика, в которой средние
числа заполнения различных квантовых
состояний частиц не предполагаются
малыми.
Эта
статистика, однако, оказывается различной
в зависимости от того, какого рода
волновыми функциями описывается газ,
рассматриваемый как система N
одинаковых
частиц. Как известно, волновые функции
должны быть либо антисимметричными,
либо симметричными по отношению к
перестановкам любой пары частиц,
причем первый случай имеет место для
частиц с полуцелым, а второй—для частиц
с целым спином.
Для
системы частиц, описывающейся
антисимметричными волновыми
функциями, справедлив принцип Паули:
в каждом квантовом состоянии может
находиться одновременно не более одной
частицы. Статистика, основанная на этом
принципе, называется статистикой
Ферми
(или
статистикой Ферми—Дирака)1).
Подобно
тому как мы это делали в § 37, применим
распределение Гиббса к совокупности
всех частиц газа, находящихся в данном
квантовом состоянии; как уже указывалось
в § 37, это можно делать и при наличии
обменного взаимодействия между
частицами. Снова обозначим посредством
Qk
термодинамический
потенциал этой системы частиц и, согласно
общей формуле (35,3), будем иметь
(53,1)
п
кГлава V
§ 53. Распределение Ферми
Поскольку
среднее число частиц в системе равно
производной от потенциала Q
по
химическому потенциалу р., взятой с
обратным знаком, то в данном случае
искомое среднее число частиц в k-u
квантовом
состоянии получится как производная
Пь=
или
окончательно
(53,2)
е
Это
и есть функция распределения для
идеального газа, подчиняющегося
статистике Ферми, или, как говорят
коротко, для
ферми-газа.
Как
и следовало, все nk^.
1.
При
ехр [(р.—е*)/^]^ 1
формула
(53,2) переходит, естественно, в функцию
распределения Больцмана.
Распределение
Ферми нормировано условием
1
-=N, (53,3)
где
N—полное
число частиц в газе. Это равенство
определяет в неявном виде химический
потенциал как функцию Т
и
N.
Термодинамический
потенциал Q
газа
в целом получается суммированием
Qft
по
всем квантовым состояниям
( v~ek\ Q = — Tj^\n\l + e~T~J.
(53,4)
§ 54. Распределение Бозе
Перейдем теперь к изучению статистики, которой подчиняется идеальный газ, состоящий из частиц, описывающихся симметричными волновыми функциями, так называемой статистики Бозе (или статистики Бозе—Эйнштейна)1).
Числа заполнения квантовых состояний при симметричных волновых функциях ничем не ограничены и могут иметь произвольные значения. Вывод функции распределения может быть сделан так же, как в предыдущем параграфе; пишем:
G. = -74n 2 \е~
!) Она была введена для световых квантов Бозе (S. N. Bose, 1924), а затем обобщена Эйнштейном.
Стоящая здесь геометрическая прогрессия сходится, только если е^~Ек^т < 1. Так как это условие должно иметь место для всех гк (в том числе и для ей = 0), ясно, что во всяком случае должно быть
Р<0. (54,1)
Напомним в этой связи, что для больцмановского газа химический потенциал всегда имеет отрицательные (большие по абсолютной величине) значения, а для ферми-газа \i может быть как отрицательным, так и положительным.
Суммируя геометрическую прогрессию, получим
Qk = Tln\l — e 7 . Отсюда находим средние числа заполнения пк = —^,
"*=^-^_!- (54'2)
Это и есть функция распределения идеального газа, подчиняющегося статистике Бозе (или, как говорят для краткости, бозе-газа). Она отличается от функции распределения Ферми знаком перед 1 в знаменателе. Как и последняя, при ехр [(и.—еА)/Т]<<с;1 она переходит, естественно, в функцию распределения Больцмана. Полное число частиц в газе выражается формулой
N = Z Л*к-»)/т , • (54,3)
к
а термодинамический потенциал Q газа в целом получается суммированием Qft по всем квантовым состояниям:
ц-е.
Q=r£iriVl — е т /. (54,4)